AMATATSTY AN

— e e ey

- N SN N

ROGER G. RODRIGUES

Cor/

MONOGRAFIA MBA-USP

GESTAO PORTUARIA

AUTOMACAO DO TERMINAL PARA FERTILIZANTES

ce vl €l K fo e

SANTOS
2.001

Sumario

Capitulo L
11

LIL

LIL
LILLL
LILLIL
LILIL
LILILL
T.HILIL
LILILIIL.
LIIL
Capitulo 11.
oL

MmLL
TLLIL
1LIL

Capitulo IIL

L1

IILIL

Capitulo IV.

IvV.L

W.ILL
IV.LIL
IV.LIL
IV.IIV.
Capitulo V.
VI

Lista de Tabelas

Lista de Figuras

Lista de Fluxogramas ¢ Diagramas do modelo proposto de automagdo
Lista de Abreviaturas ¢ Simbolos

Inirodugio; Terminal de Ferlilizantes — TEFER

Terminais de Granel Sélido po Brasil ¢ no Mundo

Terminais de Granel Sélido no Brasil — Terminal da Ultrafértii — TUF
Terminal Maritimo da Ultraféstil - TUF

Meio Ambiente

Terminais de Granel Sélido no Mundo

Comercialmente; Oferecer Pacotes de servigos aos clientes

Nameros de funcionarios

Operagbes Logisticas ¢ Equipamentos

Objetivos — Modelo de automagfio do TEFER

Modelo atual de funcionamento

Balancas

Posto Fiscal

Codesp — TEFER - Lay out do fluxo documental (modelo de informagio)

Descrigio dos equipamentos atuais, nivel de automagfo nos equipamentos ¢ 0
supervisorio administrativo
Descrever tecnologias de mercado

Modelo Proposto

Descrigio do Barramcerito

Areas de aplicago

Vamtagens ¢ Desvantagens
Componentes disponiveis no Mercado

Conclusio
Anexos
Referéncias Bibliogrificas

01
03
05
05
06
08
08
09
09
25

27
28
30
32

36

37

38
39
40
42
43

64
65
72

Lista de Tabelas

14 Levantamento do sisiema de transportadores e guindastes do Pier 1 & 2

2. Continuacdio do levantamento do sistema de transportadores e guindastes do Pier 1
&2

3 Finalizago do levantamento do sistema de iransportadores ¢ guindastes do Pier 1
&2

50
51

52

Lista de Figuras

RS BN

MNNNMNNP‘WWHHH)—'M}—IH
SJ\P‘:PP’!“’T".O}"I”?*JP\S"PP’P!—‘P

27.
28,
29,
30,
31
32.

Terminal de Fertilizantes — TEFER
Terminal Maritimo da Ultrafértil - TUF
Fibrica da Ultrafértil — TUF

Visdo do Terminal E.B.S. de Rotterdam
Visdo do Terminal E.B.S. de Rotterdam
Visdo do Terminal 2 E.B.S. de Rotierdam
Visdo do Terminal E.B.S. de Rotterdam
Visio do Terminal de Le Havre — Bulks
Visdo do Termina! de Le Havre

Visio do Terminal de Verbrugge

Visgio do Terminal de Verbrugge. ne Porto de Terneuzem

Visdio da separagio do produto por um sugador de grande poric Terminal EB.5.
Visdo da separagiio do produto por um sugador de grande porte - Terminal E.B.S.

Visio da Sala de Controle do Terminal E.B.S., em Rotterdam

Visdo da Sala de Controle do Terminal EB.S., em Rotterdam

Visdio do Grab operando no pordo de carga — Terminal E.B.S.

Visgio do Grab operando no pordo de carga - Terminal EB.S.

Visiio do Grab operando no pordo de carga — Terminal EB.S.

Visdo da operagdo de Guindastes com Grab (36 tons.) — Terminal EB.S.
Visdo da operagdo de Guindastes de 36 tons, — Terminal E.B.S.

Visiio do Terminal Europort, em Rotterdam

Visio do sistema de esteiras para transporte de produtos — Terminal EB.S.
Visdo da maquina de rechego no pordo do navio — Terminal EB.S.
Visiio do Grab operando no pordo de carga — Terminal EB.S.

Silo de armazenagem no Terminal de Laurenshaven, em Rotterdam

Visgio do descarregamento de grios com equipamento pneumatico — Terminal
EB.S.
Silo de armazenagem no Terminal de Laurenshaven, em Rotterdam

Visio da maquina de rechego no pordo do navio — Terminal EB.S.

Visfo do carregamento de grios em barcaca com prote¢io anti-poeiramento
Ponte de Balanga de Fluxo

Mapa de localizagio do Terminal de Verbrugge, no Porto de Termenzem
Sanios dista 65 Km de S#o Paulo, a maior cidade brasileira

01
05
06
10
10
11

11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21

21
22
22
23
24
24

Lista de Fluxogramas e Diagramas do modelo proposto de automagio

Fluxograma Operacional — Tetminal Portudrio 32 i
Fluxograma do TEFER - Terminal de Fertilizantes — Pier 1 53
Fluxograma do TEFER — Terminal de Fertilizantes — Pier 2 54
Diagrama de Interligacio do Sistema de Pesagem Conitnua 55
Diagrama Elétrico do Sistema Pier 2 — Armazem 2 58
Representacio das rotas de transportadoras 60
Representagio de um Mbdulo da Rede em LonWorks 61
Vista em planta TEFER do sistema de monitoramento 62
Posicionamento do sistema de monitoramento digital do TEFER 63

Lista de Abreviaturas € Simbolos

m? Metro quadrado

i Polegadas

m Metro

tons Tonelagens

hr. Hora

Arm. Armazeém

Gte’s Guindastes

hrs Horas

Ogmo Orgdo Gestor de Mio de Obra
EPIL’s Equipamentos de Protecao Individual
% Porcentagem

°C Grau

BL Bill of Lading

DI’s Documentos de Importagéo

un Unidade

D.RF. Departamento da Receita Federal
n’s Numeros

HP Horse Power

m? Metros cubicos

CD Compact Disc

Mb/s Megabytes por segundo

ms Microssegundos

I/O Input/Output

RAM Random Access Memory

kHz Quilo Hertz
‘MHz - Mega Hertz o -
v Volts

Q Omega

Capitulo 1

LL
LIL
LIIL,

Capitulo IT

ILL
ILIL

Capitulo 11

LI

ILIL

Capitulo IV

V.1

Capitulo V

V.L

Bibliografia

Introducio: Terminal de Fertilizante — TEFER
Terminais de Granel Sélido no Brasil ¢ no Mundo
Objetivos: Modelo de automacio do TEFER

Modelo atual de funcionamento
Codesp — TEFER — Lay out do fluxo documental (modelo de
informacie)

Descrigiio dos equipamentos, pivel de automacio nos equipamentos
e o supervisério administrativo.
Descrever tecnologias do mercado

Modelo proposto

Conclusio

Capitulo 1

LL

g s S

Introdugiio: Terminal de Fertilizantes - TEFER

gy

- e — - - T
a1 el g

I - Sy s = o -
e e
. e “"**.'t"‘.‘...

Fig..1 - Terminal de Fertilizastes - TEFER

a)

b)

d)

Historico:
- Terminal para Fertilizantes - TEFER, foi inaugurado em 1971, em uma area
de aproximadamente 300.000 m?, localizado na Margem Esquerda do Porto

de Santos, no municipio do Guaruja, distrito de Vicente de Carvatho -
Conceigdozinha.

Acessos:
. Rodoviarios (com pétio para caminhdes);

- Ferrovidrio para embarque em todos os Armazéns, para bitolas largas e
estreitas.

Piers:

- 02 Piers acostaveis com 283,50 metros (cada).

Calado permitido (pés):

- TEFER1 - 37" 00" NAABSA BW;
- TEFER2 - 39' 00" NAABSA BW.

¢) Calado Aéreo:

- TEFER1 - 17 metros;
- TEFER2 - 17 metros.

f) Equipamentos:

- 06 Armazéns com capacidade de estocagem de 30.000 tons/ Arm, equipados
com esteiras automaticas com Trippers;

- 9.900 metros, de esteiras transportadoras, nos piers e no interior dos
Armazéns, sendo, no Pier 1, instaladas esteiras de 24" com capacidade
nominal de 1.200 tons/hr, ¢ no Pier 2, esteiras de 42" com capacidade
nominal de 1.200 tons/hr;

- 11 Guindastes (elétricos) de tetra equipados com Grab’s automaticos de 3/5
tons, e capacidade de 300 tons/hr;

- 04 Balancas Rodoviarias - para 80 tons, interligadas e equipadas com
programas de gerenciamento de pesagens,

- 02 balangas Ferroviarias para 150 tons, ligadas ao terminal de pesagem. 12
Pas Carregadeiras para 05 tons;

- 02 Pas Carregadeiras para 2,0 tons;

- 02 empilthadeiras para 3,0 tons,

- 02 empilhadeiras 7,0 tons;

- 01 empilhadeira 10,0 tons;

- 02 Tratores para tracionamento de vagdes,

- 01 Caminhiio VW trucado equipado com Munk de 16 tons;

- 01 Cavalo e Carreta para 25 tons;

- 01 Caminhdio (Toco) para servigos gerais.

Movimento de importagdo de adubos no TEFER, foi o seguinte:

- 1995- 1.747.306 tons,
- 1996- 1.811.274 tons,
- 1997- 1.782.813 tons;
- 1998- 1.438.188 tons,
- 1999- 1.555.504 tons,
- 2000- 1.947.963 tons.

Histérico Fertimport/ TEFER:

- Com a saida da Codesp das Operag¢oes do Porto, transformando-se em Autoridade
Portusria do Porto de Santos; a Fertimport foi credenciada a operar o TEFER,
assumindo as operagdes e manutengio do mesmo até a finalizagdo da licitag@o,

- Sendo assim, em 03/08/99, a Fertimport assumiu as operagdes do TEFER,
buscando como objetive principal entregar a Safra de 1999, pois o terminal
encontrava-se em estado precério, por falta de manutengao,

bt

P

- Paralelamente, a Codesp assina junto a Cetesb, 0 TAC, termo de Alteragdo de
Conduta Ambiental, e a Fertimport assume parte das responsabilidades destas
implantagGes, em até 18 meses.

As acOes corretivas s3o as seguintes:

- Implantagdo de cinturdo Verde ai redor do TEFER,

- Implantagio dos Raspadores nas esteiras e GTE s do Pier 2,

- Organizagio do fluxo de veiculos;

- Colocac¢io de anteparos nos GTE's , para ndo permitir a quede de produtos no
estuario,

_ Murar o Pier 2, e instalar caixas de contencdo de produtos, para permitir a
lavagem do Pier sem contaminar o estuario;

- Tratamento de aguas residuais no patio de enxofre;

- A critério conjunto dos - operadores do terminal ¢ fiscalizagdio Codesp, paralisar
as operagdes de descarga de enxofre, tdo logo seja perceptivel no ar, odor
caracteristico de gas sulfidrico (HzS), até o retorno de condigBes favordveis para
dispersdo dos gases na atmosfera;

- Limpeza das areas ¢ equipamentos utilizados ma movimeniagio de enxofre
imediatamente apos o término da descarga do navio,

. Protecio das pilhas de enxoffe, a fim de minimizar o arraste do produto pelos
ventos,

- Implantagdo de sistema de carregamento do enxoffe em veiculos, provido de
equipamento de controle de poluentes (semienciausuramento, nebulizadores, €tc.).

Operacionalmente foram tomadas as seguintes providéncias :

- Entrega de produtos aos importadores, somente nos periodos : 7:00 as 13:00 hrs e
das 13:00 as 19:00 hrs,

- Implantagio de sinalizagiio de trafego no terminal, com placas sinalizadoras €
determinagio de faixas de circulagdo e filas dos autos,

- Constru¢io de nova portaria com areas definidas de circulagdo p/ tipo de veiculos
€ pessoas,

- Implantacio de pas carregadeiras com maior capacidade de carregamento, de 3,5
para 5 tons, objetivando maior produtividade para Armazém,

- Implantagdo de rotinas de limpeza das vias permanentes (ruas e trilhos), € nos
Armazéns, com maquinas varredeiras € mini-carregadeiras;

- Nos Piers; lavagens dos equipamentos (Guindastes e esteiras), objetivando a n&o
contaminagio dos produtos descarregados, ndo gerando mais "raspa”.

Estas modificagdes Operacionais nos levaram a atingir recordes nas movimentagdes
historicas do TEFER, como segue:

- Carregamento de 369 autos com 10.486,900 tons em 27/10/99, em 02 periodos
contra 369 autos com 9.537,480 tons feitos por Codesp - 03/09/97 em 03 periodos.

- Descarga de navios

- TEFER 2- 13.000,000 tons, em 24 hrs, em Out. 2000, contra 9.567,359 tons
em 1998 — produto - enxofre;

- TEFER 1- 8.251,800 tons, em 24 hrs, em 1999, contra, 8.023,900 tons, em
1994 — produto - fertilizantes.

- Carregamento de vagdes em 01 més - 38.506,000 tons em Novembro/2000, contra
34.338,000 tons em Novembro/1995.

Conscientizagdo dos trabalhadores:

- A mido de obra disponivel no Porto de Santos, conforme a lei 8.630,
obrigatoriamente & requisitada via Ogmo (estivadores, conferentes, operadores de
pas carregadeiras e Guindastes etc...), funcionarios da Codesp, ¢ da Forca
Supletiva do Sintraport, ndo tem compromissos com resultados assumidos pela
Codesp e Fertimport, sendo necessario um trabalho de conscientiza¢o com muito
treinamento;

_ Estdo sendo implantados, usos de uniformes, EPI's, cursos de especializagao para
pessoal técnico, bem como conscientizacio das atividades que possam vir a poluir
o Meio Ambiente (evitar queda de produtos no Mar nas operagOes de descarga e
ou limpeza do Pier, reaproveitamento € recondicionamento de 6leos Jubrificantes,
trapos etc...).

a— T e e e,

LIL Terminais de Granel Sélide no Brasil e no Mundo

LILL Terminais no Brasil - Terminal da Ultrafertil - TUF

Fig.. 2 - Terminal Maritimo da Ulitrafértil - TUF

LILLL. Terminal Maritimo da Ultrafértil - TUF

_ Terminal Portuario de uso privativo misto, fora do porto organizado de
Santos e alfandegado pela Secretaria da Receita Federal.

- Localizago: Ilha do Cardoso, em Santos, Sdo Paulo, em area 545.411m’.

- Descricio: tem 164 metros de pier acostavel, com capacidade para atracar
navios com até 229 metros de comprimento, 33 metros de boca, calado
maximo de 11 metros (36 pés) e 40.000 toneladas de carga.

- Capacidade de recebimento de aménia: 500 toneladas/hora

- Sistema de descarga de granéis solidos: 10.000 toneladas/dia.

- Capacidade de Armazenagem de Amdnia: 20.000 toneladas a -33°C.

- Capacidade de Armazenagem de Fertilizantes: 60.000 toneladas.

- Capacidade de Armazenagem a Céu Aberto: 60.000 toneladas.

Fig.. 3 — Fébrica da Ultrafertil - TUF

a) Historico:

LILLIL

A Ultrafertil foi constituida em 1965, com a participacio da Philips/PS
Petroleum e do Grupo Ultra além de entidades financeiras internacionais.
Em maio de 1974 a Petrobras adquiriu o controle e 0 manteve até o leildo de
desestatizagdio ocorrido em junho de 1993, quando o seu comtrole acionario
foi adquirido pela Fosfertil.

Em novembro de 1995, visando a simplificagdo administrativa e minimizar a
carga tributaria se deu a incorporagdo pela Goiasfertil S.A., empresa
controlada integralmente pela Fosfertil e dedicada a extragio de rocha
fosfatica em Catalao-Goias.

Apobs a incorporagdo a Goias Fertilizantes S.A. - Goiasfertil assumiu a razo
social Ultrafertil S.A.

A Fosfertil é detentora de 99,99% do capital social da Empresa.

Meio Ambiente

Um dos objetivos da Ultrafertil € estar em sintonia com a meio ambiente, assim

desenvolveu uma Politica de Preservagdo do Meio Ambiente em consonéincia com as
mais modernas tecnologias disponiveis no mercado em acordo com os padrdes
estabelecidos pelos o6rgios de controle ambiental. A Ultrafertil possui areas
especializadas para a protegéo do meio ambiente em todos os seus complexos
industriais e de mineragdo, assim como no terminal maritimo.

Por intermédio de um planejamento ordenado de acdes, sdo investidos milhares de
délares anualmente no tratamento de efluentes liquidos industriais; abatimento de gases
nitrosos com peroxido de hidrogénio; controle e monitoramento de acidez da estagdo de
tratamento, drenagem, tratamento e coleta de solidos de efluentes do terminal maritimo,
entre outros. A automagcio industrial também tem papel de destaque na preservacdo do
meio ambiente, ja que permite a modernizagio dos sistemas de controle de processo das
unidades produtivas. Utilizando-se de instrumentacao eletrénica digital, reestudam os
riscos dos respectivos processos e intertravamentos de seguranea, com significativo
aumento da confiabilidade do controle operacional da produ¢do. Com novas tecnologias
e modernos equipamentos, as empresas aperfeigoam a qualidade dos produtos, ganham
maior produtividade e preservam o homem ¢ o meio ambiente.

Politicas de Seguranga, Sailde e Meio Ambiente.

a) Protegio Ambiental

- Realizar avaliacio prévia de aspectos ambientais em novas atividades, bem
como minimizar a geragio de residuos, efluentes e emissdes através do
continuo aperfeicoamento dos processos e de praticas que possibilitem sua
reciclagem, reutilizagio e disposico final adequada, de maneira a prevenir
danos ao meio ambiente e & comunidade.

b) Seguranca e Saide no Trabalho

- Transmitir e fazer cumprir medidas preventivas de seguranga e saude
inerentes as suas atividades.

¢) Seguranca do Processo
- Analisar e prevenir os riscos potenciais envolvidos nas operagdes existentes,

nas modificacdes de instalages, equipamentos, condigdes operacionais e na
desativacdo de plantas de processos.

d) Transporte e Distribui¢o

- Manter as atividades de transporte e distribui¢do executadas por empresas
previamente qualificadas pela Ultrafertii ou por ela validadas,
comprometidas com as normas de seguranga vigentes.

e) Gerenciamento do Produto

- Gerenciar os produtos fomecidos a seus clientes, orientando quanto as
condices de armazenamento e manuseio, evitando-se riscos a0 meio
ambiente e ao bem estar da comumdade.

f) Dilogo com a Comunidade e Preparagdo ¢ Atendimento a Emergéncias

- Manter dialogo com a comunidade sobre suas atividades e seus produtos,
bem como preparativos de atendimento a emergéncias.

LILI. Terminais de Granel Sélido no Mundo

Podemos citar nas pesquisas feitas em visitas de pessoal técnico, em terminais
de Graneis Europeus (EBS Bulk, em Rotterdam - Netherlands, e Terminal Verbrugge,
no Porto de Terneuzen, na Holanda) diferentes tipos de equipamentos, logisticas e até a
venda do servigo com procedimentos totalmente diferentes dos utilizados atualmente no
Brasil..

Acreditamos que as diferengas que apontaremos abaixo, deverdo deixar de
existir assim que a iniciativa privada assuma os terminais.

Sendo assim, comentamos alguns dos pontos observados:

% Maiores informacdes sobre o Terminal Verbrugge vide pagina 68.

LILILL Comercialmente: Oferecer Pacotes de servigos aos clientes

Os servigos oferecidos sdo apresentados em pacotes de servigos, para atuarem
com Importagio e Exportagio/ Carga e Descarga, inclusive com produtos diferenciados
(Granel, Produtos Florestais ¢ Carga SECA, por exemplo em Verbrugge).

Produtos oferecidos:

a) Atividades Portuarias - Operagdo Portuaria, Armazenagem, Agenciamento e
Afretamentos de outros modais (rodoviario, ferroviario e aquaviério).

b) Suportes — Disponibilidade on line oferecida ao Cliente como:
- Disponibilidade de dados via EDI,

- Utilizagio de codigo de barras, com transmissdo de dados via Radio
freqii€ncia.

¢) Transportes:

- Comunicagio movel via radio com os caminhdes;
- Computadores de bordo;
- Auto identificadores.

LILILIL. Nimero de funcionarios

Face ao nivel de automagdo dos equipamentos instalados no Terminal de
Terneuzen, somadas as leis trabalhistas locais, um terminal que opera 3 mithdes de
tons/ano para Granel, entre Importacdo e Exportagao, opera com a seguinte equipe de
funcionarios:

- 06 operadores de Guindastes;

- 03 operadores de shiploaders;

- 11 operadores;

- 04 supervisores de turmas;

- 04 Coordenadores (imédia gerencia);

- 03 ADM/ Controladores,

- 05 suporte técnicos (elétrica e mecanica),
- Total - 36 funcionarios.

Destacar o profissionalismo e o nivel de educagio.

LILILIT, Operacdes Logisticas ¢ Equipamentos:

Os equipamentos disponiveis para as operagdes portuarias, sdo
disponibilizados de formas mais flexiveis e eficientes, como por exemplo, em
\Rotterdam sio oferecidos Guindastes instalados em Piers normais e em flutuantes com
torres de pesagem, que agilizam a descarga do navio.

Outra proposta, é a de “tetos removiveis” nos armazéns de descarga, €
descarregadores instalados nesta area, Pier / Armazém, dispensando as esteiras no
trajeto. Os guindastes de “giro” descarregam diretamente no Armazém Shoebox, sendo
flexibilidade a palavra de ordem nos terminais visitados, estd também foi observada nos
sistemas de armazenagem. Os terminais devem possuir estruturas horizontais (armazens
para todo tipo de carga) e silos (para cargas do tipo “free flow™). Inovagdes como 0
tijolo “lego”, usados para dividir areas dos armazéns, sendo rapidamente montados e
desmontados, armazéns do tipo “Shoebox” com o teto removivel e dispensam o uso de
moegas ¢ esteiras, sdo inovagles importantes.

As areas onde esta instalado o terminal, estdo interligadas e conectadas a auto
estradas, ferrovias.

Os equipamentos disponiveis nos terminais citados séo flexiveis, permitindo
que os mais diversos tipos de graneis s6lidos sejam movimentados. Um equipamento do

9a

tipo sugador pneumatico limitaria as opgbes, ja que este € proprio para trigo e
assemelhados. Evidentemente, em virtude do porte € do historico dos terminais
visitados, alguns equipamentos especializados foram observados, mas estes s3o minoria.

Essa flexibilidade ¢ alcangada com o uso de equipamentos com grab (de varios
tamanhos, adequados a cada peso especifico), que realizam o chamado movimento de
quadratura, evitando o giro. Os equipamentos do tipo “portico” (GRAB GANTRY
CRANE) e “Kangarco” foram os que mais se destacaram, os equipamentos do tipo
portico sdo montados no cais, enquanto os Kangoroos podem ser montados em
flutuantes. Equipamentos do tipo guindastes com giro montados em flutuantes foram
observados, mas principalmente para a descarga em moegas equipadas com balanca, as

quais descarregam para barcagas.
Informagio: Chave da Operacio

Observou-se que a chave para a eficiente operago do terminal é a informagio. A
sala de controle no terminal EB.S., vide figuras 14 ¢ 15 que ilustram este fato. Todas as
operagdes podem ser acompanhadas 14 atraves de sensoreamento remoto, controlando o
fluxo que passa por cada uma das esteiras e balangas de fluxo.)

Importante também foi a observagio ao trato com o meio ambiente. E
reconhecido que 2 legislagio ambiental brasileira ¢ uma das mais severas do mundo.
Comparando-s¢ um Terminal como o EB.S., vide figuras 4, 5, 6 e 7, com um Terminal
moderno como o da Ultrafértil, vide figura 2, nota-se neste Gltimo uma acentuada
vantagem na limpeza, inclusive dispondo de muito mais equipamentos de prote¢ao do
que o primeiro. O Terminal Verbrugge, vide figuras 10 e 11, no entanto, mesmo
dispondo de equipamentos como 2 protecio anti-poeiramento ¢ sendo
consideravelmente moderno ¢ eficiente, néo se equipara em protegao ambiental ao da
Ultrafértil.

Evidentemente, a cultura / formagio (que se esta tentando implantar
gradativamente na mao-de-obra portuaria brasileira) do “mantenha limpo evitando
sujar” é responsavel por essa “nio necessidade” de Leis severas / terminal eficiente
eficiente / termina limpo.

— - e A AR A MM A MMM, A

—

P

Fotos dos terminais acim

a citados como exemplos de atualidades n

o mundo.

10

11

—

e Ve e

—

Fig.. 6 - Visio do Terminal 2 E.B.S de Rotterdam

-~

L "

Fig. 7 - Visiio do Terminal E.B.S de Rotterdam

—

e

—

—

— g~ -

Fig, 8 — Visio do Terminal de Le Havre - Bulks

Flg..9—VisﬁodoTexmﬁlaldeI_cHavm

12

13

Fig, 10 Vistio do Terminal do Verbrugge

Fig. 11 — Visgio do Terminal de Verbrugge, no Porto de Termneuzem

—~ o

Fotos de demonstrativos

14

operacionais dos te inais acima citados como exemplos

de atualidades no mundo.

Fig.. 12— Visio daseparaciodopmdmowummgada‘degrandeporte—TeminalEB.S.

\'\i T
= A e

Fig.. 14-VizﬁodaSaladeConu‘oledoTamimlE.B.S,, em Rotterdany

Fig.. 15— Visio da Sala de Contrate do Terminal EB.S., em Rotterdam

15

— —

P . . - T e

e . Y -

— o, e e e, e,

—

-

Fig.. 16~VlsﬁodoGrabopamd0mpmﬁodeearga—TetmimlE.B.S.

Fig.. 17 --Vlsﬁodo(imbopamdomporﬁodewga—TemﬁnﬂE.B.S.

16

-

P T e

e i B

Fig.. IS—WsﬁDdoGrabcperandompmﬁodew@—TermhmlE.B.S.

Fig.. 19 — Vis¥o da operagio de Guindastes com grab (36 tons) — Terminal E.B.S.

17

— ey

o —

Fig..ZO—VlsﬁodaopaaﬁDdeGuindaslﬂSdeSﬁwms.-—TemﬁnalE.B.S.

Fig.. 21 — Visio do Terminal Buroport, em Roiterdam

18

-~ —_— - - —_— - — — —

- - - —

e e

—

e e e e

_— -

Pig..23—\ﬁsﬁodanﬁqlﬁmdered1egonopmiodomvio¥TaninalE_B‘S.

19

e e T .—\-\.-\ﬂ-\‘—‘_...-.‘.__

—

- -

P

[albaas

Fig.. 24~V@ndoGrabopaandonopaﬁodemga—TmnﬂnalE.B.S.

20

— — . e B
- -
— iy N p—

—

-y e e

' ico — inal E.B.S.
Fig.. 26— Visfio domynmodegrﬁoswmeqnpammﬁopnamﬁuw “Terminal

Fig.. 27— Silode

armazenagem no Tenminal de Laurenshaven, em Rotterdam

21

— o e e e,

— —

—

—-\ﬂ-\—*"“‘-""\"\“‘-*‘\"\

o~ g, e e =

Fig.. 28 — Visdo da méiquina de rechego no porio do navio — Terminal EB.S.

Fig.. 29 Visiio do carregamento de grios em barcaga com protegio anti-poeiramento

22

23

L S

—

S T W W W

Fig.. 30 — Porte dc Balanga de Fluxo

Mapa de localizacio do Porto de Terneuzem e do Porto de Santos

FERMRORAN

' ey T

“ ltapetingd

Fig.. 32— Santosdis!nGShndeﬁoPmﬂo,amaiorddadehasﬂeira.Eseﬂiﬂc por um grande complexo de
idade

{ransporte e, mn raio dclﬂomaﬁsauopmwsintamdonaisoomplmmmna i

24

e

1L.IOL Objetivos — Modelo de automacio do TEFER

Buscamos apresentar neste trabaiho, um projeto modular de automagdo de
terminais de Graneis (especificamente - Fertilizantes), que opera a descarga do produto
por correias transportadoras, gerando massa de dados para ferramenta gerencial.

Atividade de projetar, implantar € manter uma automagio, seja ela para apenas
uma maquina ou para uma planta de fabrica, ou terminal portuario, com varias
maquinas e motores em operagdes sincronizadas, encontra dificuldades pela necessidade
de atender a Interoperabilidade entre os circuitos operantes, sensores, ou instrumentos
de medicio a serem tratados pelo sistema central de controle de supervisao.

A diversidade de possiveis solugdes, por muitas vezes é enganosa, pois quando
o sensor ¢ adequado, ndo pode ter condi¢do de ser conectado ao sistema de controle.

A solugio final passa a ser a utilizagéo de outros circuitos auxiliares, para
toma-los compativeis uns com 0S Ouiros, ¢© assim, serem finalmente ligados aos
controladores.

Em outros casos, um instrumento de medicdo disponibiliza suas informacdes
com protocolo proprietario, ndo dispondo os “drivers” para 0 controlador escolhido e ja
adequado as demais tarefas.

Além da interoperabilidade, essa tecnologia também revoluciona os conceitos
tradicionais de automagio, pois descentraliza todo o controle do processo. Cada
elemento atuador ou sensor trabatha de forma independente, a0 mesmo tempo em que
estdo integrados as atividades dos outros sensores € atuadores.

Este projeto opera com altos indices de confiabilidade e produtividade,
compativeis com as atuais tendéncias de globalizagdo da economia.

COMENTARIOS SOBRE A PLATAFORMA A SER UTILIZADA - LONWORKS

Atualmente os Terminal de Fertilizantes - TEFER nfo sio automatizados, e
devido a sua peculiaridade, como terminal de Graneis Solidos, esta instalado em areas
acima de 150.000 m?. Qutra problematica enfrentada, é a oxidaciio de todos e qualquer
tipo de metal, devido ao tipo de produto movimentado - Enxofre ¢ Adubo em geral,
levando principalmente os cabos elétricos ¢ conexdes a gerarem problemas de
condutividade.

Face o exposto, buscamos uma tecnologia que atendessem aos seguintes pre
requisitos:

- Circuitos independentes, a fim de ndo paralisar o controle, para eventuais
problemas elétricos / eletrénicos.- Total INTEROPERABILIDADE;

- Baixo custo de instalagéo;

- Baixo custo de manutengao,

- Facilidade de manuseio, buscando menor custo do corpo técnico.

Face o exposto, apontamos a tecnologia LONWORKS, como a indicada para
este tipo de aplicago, visto que ¢ uma excelente plataforma para o desenvolvimento de
redes de controles com topologia aberta, com aplicagbes em automagio industriais,
predial, residencial, e comercial, podendo operar 08 mais variados meios fisicos
(midias).

26

Com uma vasta gama de ferramentas operacionais, viabiliza o controle e
supervisdo de uma rede implementada ou em implantagdo.

Esta tecnologia proporciona ¢ controle total da rede, distribuindo e associando
a ela, circuitos customizados com atividades individuais, sejam eles semsores oOu
atuadores, sendo todos dotados de inteligéncia propria e autonomia com prerrogativas
de monitoragio e controle.

Podemos entdo definir como Administragdo de REDE processo de instalagdo,
onde os circuitos sensores € atuadores inteligentes (denominados — NOS), sdo
interligados e programados para trabalharem em conjunto numa mesma rede de
controle, e manutengio de todo o este sistema.

E importante distinguir os conceitos de Administracio da REDE, que ndo
devem ser confundidos com a monitoragio e controle das funcgbes diversas € conjuntas
propostas pela rede.

Administragdo de rede engloba todo o processo de instalagdo, interligagdo €
configuragiio dos varios nos para que operem em conjunto € da melhor forma.

Uma ferramenta especifica para a Administragio de Rede, ndo atua
diretamente na troca de aplicagbes, mensagens ou variaveis de rede, ¢ também n2o é
necessaria ficar conectada permanentemente na rede para que esta opere.

Diferentemente das ferramentas ¢ sistemas utilizados para controlar e
monitorar os NOS (sensores e atuadores) dessa rede, uma vez que estes sio dispositivos
ativos e participam normalmente na operagio do sistema, sendo sua conexao
permanente indispenséavel para seu funcionamento.

Uma Gnica ferramenta pode combinar as fungdes de instalagdo e manutengdo €
depois pode permanecer para monitorar e controlar, ou pode ser usada como dispositivo
em separado.

Sendo uma solugdo de projeto, para o embasamento de aplicagdes em redes de
controle, a administragdo da rede é uma consideracdo chave para a determinagdo de
cada ferramenta e componentes LONWORKS.

No Capitulo I1I, estaremos comentando e exemplificando as tarefas exigidas
para instalagdo de uma rede baseada na tecnologia LONWORKS, bem como um breve
resumo das varias maneiras de realiza-las.

27

Capitulo II
j 18} Modelo atual de funcionamento

Os Terminais de Fertilizantes que atuam no Porto de Santos — TEFER e
ULTRAFERTIL, ndo estdo automatizados totalmente.

O TEFER , esta com o seu sistema de Balangas totalmente automatizada e
interligada.

Como foi explanado no “histérico do Terminal”, o modelo atual de
funcionamento, mantém as determinacdes feitas por Codesp, e mantidas atualmente pela
Fertimport, atuando como um — CAIS PUBLICO -, ou seja, qualquer Operador
Portuério — escolhido pelo Importador do produto, € que esteja com suas obrigagdes
com a Codesp, trabalhara nas instala¢des do Porio de Santos, e especificamente no
TEFER.

Sendo assim, nesia explanagdo, estaremos dividindo as operagdes no TEFER,
em 02 areas :

Area 01 - Operacies no Pier / Descarga do Produto
Consiste nas atividades de :

- Planejar a chegada do Navio e tomar as providéncias necessarias para sua
atracagio e operagdo, disponibilizando — calado, Mio de Obra para atracagio, €
condiges/ espago para descarrega-lo nos Armazéns, em locais chamados de —
Celas, Boxes, ou diretamente no caminhdo (Descarga Direta), via esteiras (Pier 2),
ou através do Grab abrindo diretamente em cima do caminhdo..

- Disponibilizar equipamentos de Terra (Guindastes , esteiras, balangas de fluxo,
Armazéns) para a descarga do navio, conforme requisigdo do Operador Portuério.

Documentagiio exigida para Fiel Depositario, para iniciar a descarga e ou a liberagdo do
produto na retaguarda.

- Averbagio da carga- Despachante / Fiscal Receita federal,

- Documentos de importagio (BL, manifesto, DI's liberadas),

- Comprovante de Importagiio / pagamento de Armazenagem,

- Requisigdo de retirada e Nomeagdo de transportadora (Rodovia),

- Requisigio de retirada e nota de expedigio (Ferrovia),

- Liberacio do local para armazenagem- Armazeéns / Celas;

- Cadastro no sistemas de pesagens,

- Controle de produto armazenado para Navio (Através Armazém / Celas);

- Controle de Cobranca de Armazenagem p/ periodo atraves do saldo da carga.

28

Area 02 - Operagdes de Retaguarda
Consiste nas atividades de:

_ Manter contato com os Importadores a fim de programar quantidades de produtos
a serem retirados no préximo periodo, € © recebimento € aprovagio da
documentagio necessaria.

- Com esta informagdo, devera ser requisitada a guantidade de avulsos necessarios
para operar os equipamentos de entrega:

- Pas Carregadeiras,
- Tratores,
- Carregador de vagoes.

- Acompanhar e fiscalizar a entrada dos caminhdes no Terminal, a sua pesagem, O
seu carregamento no Armazém , 0 enlonamento do caminh@o, a pesagem € libera-
lo para a saida do Terminal.

& Vide documentos anexo:

_ Previsio de retirada de produto solicitado pelo importador,

- Mapa de armazenamento de produtos — diario (Para orientagdo e planejamento de
trabaihos, bem como informagéo a Importadores),

- Requisi¢io de Mao de Obra Avulsa - OGMO;

- Ficha de entrega de produto para comprovante de importagio,

- Boletim de servigos em Armazéns (discriminagdo de carga retirada p/ Navio/
Comprovante de Importagio),

- Acompanhamento de paralisagio de equipamentos;

- Registro de pesagem de vagdes,

- Ficha de acompanhamento de retirada para ferrovia,

- Transferéncia de dados para emissio de Nota Fiscal,

_ Demonstrativo de entrega diaria de produto — Rodovia,

- Demonstrativo de entrega diaria de produto ~ Ferrovia,

- Mapa com movimentagdo diaria de entrega para modais Rodovirio e Ferroviério.

1111 BALANCAS

O TEFER opera com 04 balangas rodoviarias com capacidade de 80,000
tons/un, e 02 balangas Ferroviarias p/ 150,000 tonsfun.

As mesmas estio automatizadas, e interligadas entre si, e o Posto Fiscal e o
Gerenciador (fiel), podendo o auto entrar ¢ sair para balangas diferentes.

Abaixo explanamos o seu funcionamento:

29

a) Componentes de hardware:

- Concentrador:
- Microcomputador,
- Modems para comunicagdo.

- Posto de pesagem:
- Microcomputador,
- PLC;
- Mbdulo de pesagem (balanca);
- Modem;
- Sensores de posi¢do,
- Sirene;
- Semaforo.

- Geral:
- Rack para posto de pesagem,
- Cablagem;
- Rack para modems.

b) Componentes de software:

- Concentrador:
- Programa que administra banco de dados de pesagens;
- Programa de comunicagdo via modems.

- Posto de pesagem:
- Programa supervisor de pesagens (no microcomputador);
- Lader (Programa) de controle de dispositivos (sensores, sirene e
semaforo) e pesagem (no PLC),
- Programa de comunicacdo via modem.

- Geral:
- Programa gerenciador do sistema de pesagens (relatorios, etc.)

¢) Processo de pesagem
No posto de pesagem:
- Fungio do PLC:

O Lader do PLC monitora fisicamente a entrada e saida do caminhfo sobre a
plataforma de pesagem, analisando os sensores que esidio posicionados na entrada ¢
saida da plataforma e peso instantdneo durante a entrada do caminhfio. Através deste

monitoramento o Lader consegue verificar se houve alguma irregularidade no
posicionamento do caminhdo sobre a plataforma ou na entrada e saida do mesmo. Isso €

30

possivel devido a Interceptacio dos sensores pelas rodas (eixos) do veiculo e da curva
de pesagem durante a entrada e saida do mesmo, ou seja, é contado quantos €ixos
adentram a plataforma de pesagem e quantos saem no final da pesagem, também €
verificado o sentido que o veiculo esta se deslocando. Simultaneamente é verificado o
peso de cada eixo que adentra a plataforma, ¢ ¢ comparado com O peso de cada eixo que
sai da plataforma de pesagem. Caso seja verificada alguma distor¢io neste processo, 0
Lader informara ao microcomputador que a pesagem foi invalida devido a alguma
irregularidade.

- Fungio do microcomputador:

O programa do microcomputador cuida de toda a interface homem-méquina,
interagindo com o operador para entrada de dados e informagdes sobre a pesagem em
andamento. Também é sua funglo gerenciar a pesagem controlando o PLC ¢ a
comunicacio com o Concentrador de dados, ou seja, busca os dados necessarios a
pesagem no Concentrador (dados do veiculo, informagoes historicas do motorista, tara
se ja pesou vazio, etc.) € envia 0s dados da pesagem, também gerencia as atividades do
Lader e suas respostas.

No Concentrador de dados:
- Fungiio do microcomputador:

Armazena os dados de pesagens recebidos dos postos de pesagens no banco de
dados principal e pesquisa e informa todas as requisigdes de dados solicitadas pelo
microcomputadores dos postos de pesagens. Armazena dados de pesagens, veiculos,
motoristas, historico de irregularidades, etc.

Gerenciador do sistema

Através do banco de dados formado pelo Concentrador, realizada relatorios e
graficos que permitem o gerenciamento do sistema, além de permitir a administragao do
sistema com cadastramento de operadores, senhas de acesso, dados de postos de
pesagens, eic.

11L.1.I1. POSTO FISCAL

E o local de controle onde todos os dados da Carga a ser retirada, da
transportadora, Importador e do veiculo, séo adicionados ao sistema.
Fisicamente também s3o notadas as placas do auto, as condigdes de limpeza da
carroceria (através de espelhos direcionados ao interior da carroceria), os dados da
minuta, inclusive se a carga esta totalmente liberada para o carregamento.

Inseridos os dados e com a vistoria OK, o auto dirigi-se a balanga que estiver
desocupada, ¢ ap6s a parada do auto em cima da plataforma da balanga, os dados

31

imputados no PF, sdo agora apontados em um bilhete de Pesagem, que serd impresso
juntamente com O peso bruto do auto.

Estes equipamentos (micros, CLP’s ¢ sistema), foram comprados apos a
entrada do novo Gestor do Terminal, bem como 08 procedimentos de seguranga.
Apbs a pesagem O auto dirigi-se para 0 Armazém, onde devera ser carregado €
novamente pesado, para emisséo do Bilhete que dara origem a Nota Fiscal.

& Vide documentos anexos apresentando as telas utilizadas, e os documentos
emitidos.

32

ILIL Codesp — TEFER — Lay out do fluxo documental (modelo de
informagio)

TERMINAL PORTUARIO - FLUXO OPERACIONAL

Aeompanhar

Importacan Progam agio
do Porte

!

(Verffisar N avios
Programados para o
Terminal Fertimport

}

Feceber Flano
de Carga
' {por fax)

!

Programar e
Risponibilzar Celass
Descarga Direta

1

Preparar Piere
Equipamentos

:

{ Requisitar Mo de
Ohbra interna

Inicio Atracacgio do Havio l

{ Registrar informagdes
de Afracagio do Navio

Fim da Atracagiio do Havio l - & P th 6 noras

T i § 3R M aleldeda
Programar Descarga 17 A% 19 R Nzo & Flefagundy
o Biorio o Ratitada |~ | - 10 T B o Retapad (s sogies]

1ot Tt MRS

i de Pedutos nos 1
Pimazérs
{ Liberar docurrentos R sebifdade: boateie
[es pach anta/Receita //:
{ Fedaral & Pagar
Armazenagem

I

Programar Eniraga
{ Junto aos Clientes
(F abricd)

33

3+ ! r L

! . Programar Miquina s Programar o de Programar hio de
Aimentar Sistema para Girega Obra para Entnega & Obra ntema
de Pas3gem ¢ Limpeza Limpeza (DGMO) (Assist. Operational)
Liberar Degcarga |iberar Camegamento
do Havio para Caminhbes
Descarga do Navio/ | j
Camegamento dos Armazeéns]
. Liberar Descargd —
Py hotin O S0 . ek mrd
E’m Vi v e ~] do Kawio e
S oo 3 Byt Tarminiivi
Furvimanhdfty
« Copias
Coletar hformagfes e ,,/f B
Administar Operaghes phicc
CLnB
- o - . St e o Tomhgsee g Ga 'y
Fimda Dperagio / Saida do Havio e Coiral CBa
Gerar Relatbrios |——o ?m FRSRRe LR al
» [Echun ¥ Brk
+ e TR i . i D1

Comentario — Fluxo Operacional — Terminal Portuario

1) Acompanhar programagao do Porto

A Codesp, e as Agéncias de Navegacio, emitem boletins de previsdo de
atracaciio e estadia de navios no Porto de Santos.
Nestes boletins sdo informados:

_ Nome do navio ¢ procedéncia;

_ Data de chegada e previsao de saida;

- Bergo que o navio devera atracar,

- Tipo da carga e 0 total manifestado;

- Operador portuanio nomeado e a Agéncia protetora do navio.

34

2) Verificar Navios Programados para o Terminal -TEFER

Com as condi¢des acima, acompanhar a movimentagio dos navios nomeados
para o Terminal.

3) Receber o plano de Carga

A Agéncia envia a disposi¢io € 0 tipo da carga depositada por pordo.

4) Programar disponibilidade de Celas/ Descarga Direta

Com base na data de chagada do navio, e o tipo de carga, o terminal inicia a
disponibilidade de espago para a descarga do navio.

5) Preparar Pier ¢ equipamentos:

Terminal deve providenciar a disponibilidade dos equipamentos a serem
utilizados — Guindastes, esteiras, P4s carregadeiras, bem como 08 mesmos deverdo estar
devidamente limpos, sem residuos de produtos de outras descargas.

Quanto ao Pier, deverdo ser inspecionadas as: defengas, cabegos de
amarracdo, condi¢des do piso e de limpeza em geral.

6) Inicio da Atracaggo :

Apbs definida a data e hora da atracagiio (em fungdo da tabua de mares € da
fila de navios), o terminal prepara a equipe de atracacio composta por 08 homens, que
ficam a disposigdo para realizagio de tal tarefa.

Esta operagdo é acompanhada de pessoal da fiscalizagio Codesp, do operador
portuario/ terminal .

7) Registrar informagGes da atracago do Navio:

Representante da fiscalizagdo do porto, € do terminal, registram os horérios de
colocagiio dos cabos de amarracdo do navio, o seu registro no Porto de Santos, €
acompanha a arqueacdo do navio.

ATIVIDADES DE RETAGUARDA :

1) Programar a Descarga do Navio e retirada de produtos nos Armazens:

35

Terminal, devera apontar ao operador portuario, 0s locais dentro do Armazém,
em que a carga ird ser depositada, bem como nos§ casos de entrega de produtos aos
fabricantes, devem ser confirmadas as quantidades junto ao fabricante.

2) Liberar documentos — despachante / DRF, de produtos nos armazeéns:

Quando a carga “toca” no chdo do armazém, o fiel 1he concede um aviso de
presenga de carga no Terminal, que posteriormente, deverd ser liberada pelo
despachante nomeado pelo dono da carga (Importador), para libera-la.

3) Programar retirada com as fabricas:

Com objetivo de otimizar a entrega dos produtos, o Terminal contacta as
fabricas e programa o volume a ser retirado, bem como serve de base para a devida
programagio de Mio de Obra junto ao Ogmo.

4) Alimentar o sistema de pesagem:

Os n° de DI - (Declaragio de Importagdo), devem ser registrados na
memoéria do sistema, para que possa funcionar e controlar o sistema,

5) Programar maquinas de limpeza:

Com base nas informagdes dos importadores/fabricas, devemos agendar Méo
de Obra junto ao Ogmo bem como equipamentos (Pas carregadeiras), para entrega deste
material.

6) Gerar relatorios de

- Entrega para armazem,

- Saldos,

- Fechamento de bragagens,

- Fechamento do navio ac término do produto.

36

Capitulo 1

JIIN Descricio dos equipamentos atuais, nivel de automaciio nos

equipamentos e o supervisério administrativo

a) QGuindastes:

- Takraf, com capacidade para 300 tons/hr., peso total- 239,554 tons, equipados
com Grab s, N3o automatizado.

b) Esteiras:

- Pier 1 — correias transportadoras de graneis de 24, em estruturas metalicas
suspensa (moveis e fixas),

_ Pier 2 - correias transportadoras de graneis de 42, em estruturas metalicas
suspensa , equipados com raspadores em razdo do trabalho com enxofre.

Controladas por painel de comando central e bloqueios manuais, ngo automatizados.

¢) Balangas de fluxo:

- 04 un instaladas no Pier 1, marca Schenk, com capacidade de 500 tons/hr., ndo
automatizada.

- Pier 2- N#io possui balangas de fluxo.

d) Balangas Rodovidrias:

- 04 un marca Toledo para 80 tons , automatizadas e interligadas p/ sistema *

e} Carregador de vagio:

- 04 un , construciio local, equipados com esteiras de 247, acionados por motores de
25 HP, com capacidade de 300 tons/hr, nio automatizada.

f) Armazéns

- 06 un ,com capacidade de 30.000 tons, dividido para 21 celas de capacidade de
1500 tons/un . O empilhamento é feito p/ esteiras fixas e méveis (04 un) ligados
ao Pier 1 (Armazéns 1 € 3);

37

e por Tripper com esteira de 42« ligados ao Pier 2, (Armazéns 2, 4,6 € Patio de
Enxofre).

Obs. Nenhum equipamento nos armazéns ¢ automatizado.

-
0.0

Para o escoamento/entrega do produto estocado, sio utilizadas 12 Pas
Carregadeiras, ¢/ capacidade de 3,5 m® .

Sistema de automagio das Balancas Rodoviarias, Posto fiscal e Posto do Fiel :

[1181}

a)

Pescrever tecnologias de mercado

Allen Bradley , Rockwell , Reliance Eletric — S&o fornecedores de equipamentos
e sistemas mais implementados atualmente nos terminais de graneis
automatizados, como — Cargil, Coopersucar .

Q30 ferramentas de software , para a supervisdo e controle € aquisicdo de dados de
proceso, para plataformas Windows 95 e Windows NT, que provem ao usuario o
estado da arte em tecnologia, tais como controles Active X, em telas graficas,
além de total integragdo ¢f produtos Microsoft.

Para a migracio dos dados, sdo utilizados CLP, AL que permitem importar
diretamente de seus arquivos, oS dados fornecidos p/ equipamentos monitorados.

Coletores de dados :

Outro equipamento utilizado nos terminais portuarios, sio os coletores de dados
acoplados a radio frequéncia. Normalmente utilizados nos sistemas de balangas,
Coletam os dados ja cadastrados do caminh3o, e transmitem 08 dados ao sistema
central, quando o auto € pesado na balanga , eliminando a presenga do balanceiro.
No carregamento de vagoes , este equipamento também ¢ utilizado, na coleta de
dados do vagio .

Sistema Microled — automagéo de balancas rodoviarias e ferroviaras :

38

Capitulo IV

IV.L Modelo Proposto

A Produgio Brasileira de Fertilizantes, concentra-s¢ no periodo de Agosto a
Novembro e totaliza 16 milhoes de toneladas, sendo que no Porto de Santos circulam
entre os terminais Tefer e da Ultrafértil, 4 milhGes de toneladas.

Dentro desta necessidade, buscamos apresentar um projeto modular de
automagdo de terminais de graneis (especificamente - fertilizantes), que opera &
descarga do produto por correias transportadoras, gerando massa de dados para
ferramenta gerencial.

Viabilizago do projeto com total INTEROPERABILIDADE

A atividade de projetar, implantar ¢ manter uma automagcdo, seja ela para
apenas uma maquina ou para uma planta de fabrica ou terminal portuério, com varias
maquinas € motores em operagdes sincronizadas, encontra dificuldades pela necessidade
de atender 3 interoperabilidade entre 08 circuitos operantes, sensores ou instrumentos de
medicio a serem tratados pelo sistema central de controle de supervisao.

A diversidade de possiveis solugoes, por muitas vezes é enganosa, pois quando
o sensor & adequado, ndio pode ser conectado 20 sistema de controle. A solugio final
passa a ser a utilizacdo de outros circuitos auxiliares, para torna-los compativeis uns
com 08 outros e assim, serem finalmente ligados aos controladores.

Em outros casos, um instramento de medigio disponibiliza suas informacdes
com protocolo proprietario, ndo dispondo de drivers para O controlador escothido ¢ ja
adequado as demais tarefas.

Além da interoperabilidade, essa tecnologia também revoluciona os conceitos
iradicionais de automagdo, pois descentraliza todo o controle do processo. Cada
clemento atuador ou sensor trabalha de forma independente, a0 mesmo tempo em que
estdo integrados as atividades dos ouiros sensores e atuadores. Gerando desta feita o
conceito de no inteligente. Este projeto opera com altos indices de confiabilidade €
produtividade, compativeis com as atuais tendéncias de globalizagdo da economia.

Toda definigio em automagao requer a priori, um profundo conhecimento do
sistema em utilizagdo para a mais segura € objetiva conduta operacional. Para tanto
estivemos em campo, catalogando dados de engenharia para que constatassemos a sua
capacidade de movimentagao e estocagem de produtos em sua atual area fisica.

Este catalogo tem por finalidade, embasar toda e qualquer atitude de
automagio voltada a este projeto. Nos cabe lembrar que o mesmo traz ao leitor uma
visdo global facilitadora da estrutura portuana.

Apresentaremos a composicdo deste catalogo em forma de planithas, plantas €
suas memorias de clculo em forma de anexos para ndo avolumarmos 0 ¢orpo principal
deste contetdo.

Passaremos & expor nosso estudo , para aplicagao da tecnologia Lon Works em
nossa proposta de automagio.

39

Lon Works — pesquisa da tecnologia.
Descricio, Aplicagdo, Vantagens, Desvantagens ¢ Componentes

IV.LL Descri¢io do Barramento

A tecnologia LonWorks fornece uma solugdio para muitos problemas de
projeto, construgio, instalagiio e manutencdo de redes de controle cujo tamanho pode
variar de 2 a 32000 dispositivos conectados através de par trangado, linha de
transmissdo, cabo de fibra optica, cabo coaxial, RF ou infravermelho. Pode ser usada
em qualquer lugar - de supermercado a plataforma de petroleo, de foguetes aos veiculos
utilitarios, de residéncias aos arranha-céus. O conirole de uma rede LonWoks é
distribuido. Dispositivos de controle inteligentes chamados nos, comunicam entre si
usando um protocolo comum. Cada no6 na rede contém uma inteligéncia embutida que
implementa o protocolo, distribui o processamento de cargas e efetua as fungdes de
controle. Com as fungses de controle distribuidas, o desempenho e a confiabilidade dos
sistemas que utilizam tecnologia LonWorks sio consideravelmente aumentadas. Além
disso, cada no inclui uma interface fisica que acopla o nd microcontrolador com o meio
de comunicagio. Um no tipico, numa rede de controle LonWorks, executa tarefas
simples. Dispositivos como sensores de proximidade, chaves, detetores de movimento,
relés e controladores de motores podem sef nbs na rede. A tecnologia LonWorks € um
sistema aberto, permitindo combinagdes de componentes de diferentes fabricantes e,
permitindo também, adicionar novas funcdes de controle com um custo mais baixo. A
tecnologia LonWorks possui um protocolo chamado LonTalk que implementa as sete
camadas do modelo OSI - Modelo de Referéncia para Interconexéo de Sistemas Abertos
e possui mecanismos que impedem a modificagdo acidental ou intencional. Inclui ainda,
outras caracteristicas tais como: fungdes de reconhecimento (acknowledgement),
comunicag¢do peer-to-peer, prioridade na transmissdo, detecgio de mensagens
duplicadas, evita colisBes, retransmissao automatica, detecgiio e corregiio de erros,
padronizag8o e identificacdo do tipo de dados. E um protocolo aberto que permite a
qualquer companhia coloca-lo no processador que deseja. Isto significa que aplicagdes
que requerem processadores de 16 ou 32 bits ndo necessitam mais de programa de
interface para o microprocessador. Esse protocolo esta sendo analisado pela Associagao
de Indistrias Eletronicas afim de ser recomendado como um padrdo para automacao
residencial. Além disso, esse protocolo é parte do American Society of Heating,
Refrigeration, and Air-Conditioning Engineers’s BACnet control standard for buildings.
Isto é conhecido como ANSIUASHRAE 135-1995. Apesar da possibilidade de
implementar o protocolo LonTalk num processador genérico, a Echelon desenvolveu o
Neuron Chip que é mais apropriado para aplicagdes de controle por varias razdes. O
Neuron chip é composto por {rés processadores de 8 bits onde dois deles sdo otimizados
para executar 0 protocolo e o terceiro para aplicagdes dos nos. O Neuron chip incorpora
watchdog timers, 35 tipos de controladores de dispositivos, um sistema operacional em
tempo real distribuido, trés tipos de meméria, possui um vetor de 48 bits acessivel via
software que garante um enderego disponivel quando da instalagio de um n6. O
protocolo LonTalk possui alta confiabilidade, pois garante que a informagdo fol
transmitida e recebida com sucesso. Garante a integridade dos dados porque ndo usa
paridade nem checksum, mas sim, controle por CRC. Os transceivers, equipamentos

40

utilizados na interligagio dos nos com o barramento, sio capazes de corrigir e detectar
erros evitando a retransmiss3o. O protocolo LonTalk utiliza CSMA p-persistente
preditivo com opgao de prioridade e detecgdo de colisdo. Esta tecnologia supera 05
inconvenientes das técnicas tradicionais de CSMA.

IV.LIL Areas de aplicacdo

A tecnologia LonWorks € utilizada em:

- Automaciio residencial e predial;

- Automacdo dos servigos de utilidade publica (gas encanado por exemplo);
- Automagdo industrial,

- Transporte.

Descri¢io de algumas caracteristicas de redes LonWorks para controle de
residéncias e gerenciamento de energia.

Antes de surgir o barramento Fieldbus as residéncias eram equipadas com
dispositivos de controle como por exemplo; portao automatico, alarme, circuito interno
de TV mas estes dispositivos ndo estavam interligados em rede. LonWorks ¢ uma
tecnologia de controle de residéncias e edificios capaz de integrar os diversos
dispositivos num {nico sistema além de possibilitar a interconexdo de produtos de
diferentes fabricantes. Esse barramento & uma solugdo flexivel, poderosa, de arquitetura
aberta, com tempos de resposta rapidos e com custo relativamente baixo. Observe a
seguinte situagdo: "Imagine acordar com ufna voz suave, com musica ao fundo falando
que ja ¢ hora de vocé se levantar. Quando vocé entrar no banbo o sistema de
aquecimento comeca a funcionar fazendo com que sua cafeteira ja comece a preparar 0
seu café na cozinha. Enquanto vocé estiver tomando o café da manhé& na cozinha a
televisdo ativa seus e-mails e 0s 1& para vocé através do sintetizador de voz. Se voce
entrar no seu carro elétrico e perceber que esqueceu de recarregar as baterias percebera
que este problema ja foi detectado e automaticamente as baterias ja foram recarregadas
durante a noite. Se vocé por acaso ndo gostasse de chegar cedo ao trabalho porque pela
manhd o prédio onde vocé trabalha esta sempre escuro, fiio e ligeiramente assustador ¢
descobrisse que a partir de agora assim que vocé estacionar O seu carro no parque de
estacionamento as luzes do prédio onde vocé trabalha automaticamente se acenderio,
seu computador sera ligado automaticamente € 05 SCus e-mails acessados. Se vocé
descobrisse que ndo serd mais necessario trabathar no chio de fabrica como ja era de
costume, mas sim num confortavel escritorio e certo de que todas as atividades
realizadas em chio de fabrica estdo sendo realizadas eficientemente, além de seguranga,
gerenciamento de gasto de energia nos horarios de pico e automagao de muitas outras
atividades”. A situagdio descrita acima ja é possivel gracas a tecnologia LonWorks que
ja se encontra presente no mercado.Com o uso de sistemas de controle inteligentes para
residéncias é possivel controfar:

4]

1) Tuminacdo:

E possivel controlar luzes em qualquer comodo da casa em qualquer hora do
dia
2) Sistemas de Ar Condicionado:

Os locais da casa onde vocé se encontra sio refrigerados e o sistema sera
desligado automaticamente quando vocé sair.

3) Aquecimento:
Enquanto vocé dorme o controlador do volume diminui o aquecimento e

quando vocé acordar pela manhd ele automaticamente deixa a sua casa fuma
temperatura ligeiramente morna que é mais agradavel.

4) Seguranga.

Sistema de alarme contra roubos da sua casa reconhece pessoas estranhas mas
admite que as pessoas possuidoras de uma senha como encanadores ou outros
prestadores de servi¢os possam eptrar sem problemas.

5) Irrigag@o:

Os irrigadores sdo ligados automaticamente quando o gramado esta precisando

de agua e sdo desligados quando chove.
6) Gerenciamento de energia:
Nos horarios de pico vocé pode utilizar a tecnologia LonWorks para desligar

alguns dos aparelhos elétricos da sua casa de acordo com a prioridade que vocé mesmo
estipular evitando assim desperdicio de energia.

7) Entreterdimento:

De qualquer cdmodo da sua casa voc€ poderé controlar a Televisdo, o CDeo
video cassete através de um controlador remoto facil de usar.

42

IV.LUL Vantagens e Desvantagens

VANTAGENS:

1) Rapidez no desenvolvimento de projetos:

LonWorks permite desenvolver um sisterna desde o inicio em menos de um
ano causando um aumento da renda pois seu sistema entra mais cedo no mercado.

2) Baixo custo:

LonWorks é uma das alternativas de mais baixo custo dentro deste segmento
segundo opinido de usuérios.
3) Interoperabilidade:

Qualquer produto ou sistema baseado na tecnologia LonWoks pode se

comunicar com outro produto ou sistema que também tem esta tecnologia ndo
importando se sio de fabricantes diferentes.

4) Modularidade:

E possivel adicionar a0s poucos dispositivos & sua rede de controle LonWorks.

5) Boa performance:

A velocidade da rede é aumentada pois o processamento ¢ distribuido.

6) Boa Confiabilidade:

Cada ponto da rede possui inteligéncia para processar as informacdes no
mesmo local onde estas sio adquiridas, evitando que haja concentragdo em um (inico
nd.

7) Disponibilidade:

Existe no mercado uma variedade de fabricantes usando tecnologia LonWorks.

43

8) Padronizagdo:

As redes baseadas na tecnologia LonWorks foram reconhecidas pela ANSI
(American National Standards Institute) como sendo verdadeiramente uma arquitetura
aberta.

DESVANTAGENS:

1) Ousoda tecnologia LonWorks tem seu uso limitado & redes de controle que ndo
requerem taxas de transmissio superiores a 1.25 Mb/s e tempos de resposta através da

rede de 7-13 ms € permite somente comunicag¢io entre equipamentos LonWorks.
1V.LIV. Componentes disponiveis no Mercado

A Echelon, que ¢é a criadora da tecnologia LonWorks, € a principal
fornecedora de produtos desta tecnologia. Possui uma linha de mais de 75 produtos
que inclui todos os equipamentos necessarios para desenvolvimento, fabricagdo,
instalagdo e manutengio de redes LonWorks. Alguns dos equipamentos s&o.

- LonWorks Transceivers;

- (Gateways ¢ Interfaces para redes LonWorks;

- Roteadores LonWorks;

- Ferramentas de Servigos de Rede LonManager,
- Ferramentas de Desenvolvimento.

14 a Motorola e a Toshiba fabricam com exclusividade e vendem os Neuron
Chips utilizados nos nos das redes LonWorks. Alguns dos componentes disponiveis no
mercado serdo methor descritos abaixo para uma melhor compreensao:

1) KITDEVO MULTI-FUNCIONAL LONBUILDER modelo 2800:

O kit de O multi-funcional LonBuilder & uma colegdo de dispositivos de 10
para o LonBuilder Developer’s Workbench. Estes dispositivos de 1/O apresentam
display numérico com 4 digitos, sensor de temperatura, transdutor de pressdo, dois push
buttons e dois LEDs. Os dispositivos /O séo fisicamente montados no modulo /0
Gizmo 2, o qual pode ser usado para testar aplicagbes em LonWorks. O Gizmo 2 €
conectado ao Emulador Neuron LonBuilder utilizando uma placa de interface e cabo de
interface de 1/0, sendo que ambos estdo incluidos no kit. Os dispositivos Gizmo 2
fornecem hardware que podem ser usados em nds LonWorks. Muitos programas em C
sio incluidos com o kit a fim de fornecer solugdes de engenharia para uma variedade de
problemas de /0. O Gizmo 2 é também usado para construir um no capaz de simular
um gerador de testes para todos os outros nos.

44

Descri¢io:
O kit de 1/0 multi-funcional inclui os seguintes componentes:
a) Gizmo 2: Um mbédulo com 8 Neurons Chips compativel com dispositivos de /O,

b) Placa de interface de aplicagéio (AIB): Uma placa de expansdo para LonBuilder
que fornece acesso a0 Neuron Chip de /O, comunicagdes, clock externo, reset €
sinais de servicos. Um conector DB-25 na frente do AIB fornece acesso facil para
estes sinais. As comunicagdes, /O e sinais de servigo sdo protegidos atraves de
diodos de protegdo ESD;

¢) Cabo de interface de 1/0O de aplicagio: E um cabo que conecta os sinais de /0O do
AIB para o Gizmo 2;

d) Discos de exemplos de programacio de 1/O multi-funcional:
Exemplos que demonstram uma variedade de objetos de /O que ddo suporte a0
Neuron C.

2) KITDE INTERFACE DE APLICACAO LONBUILDER modelo 27810:

O kit de interface de aplicagiio LonBuilder (AIK) é uma interface de 1/0 para
LonBuilder que simplifica o desenvolvimento e testes de J/O externas € hardware de
comunicagio. O AIK da suporte também aos testes dos circuitos dos nods. Permite
também testar e fazer debug dos produtos utilizando uma poderosa ferramenta de
Neuron C debugger.

Descrigdo:
O AIP Kit inclui os seguintes componentes:

a) Placa de interface de aplicagdo (AIP):
Uma placa de expansdo para LonBuilder que fornece acesso para 1/0 do Neuron
Chip, comunicagdes, clock externo, reset e sinais de servigo. Um conector DB-25
na frente do AIB permite facil acesso a estes sinais. As comunicagdes, /O e sinais
de servico sdo protegidos com diodos de protegiio ESD;

b) Cabo de interface de aplicagio (AIC): Cabo que conecta a AIB ao hardware
externo. Apresenta imunidade ao ruido,

¢) Interface de aplicagdo do modulo (MAI): A MAI substitui os moédulo de controles
do nd usuario;

d) Adaptador de interface de aplicagio (AIA). Uma placa de interface que &
compativel com adaptadores Neuron 3120 e 3150 disponiveis pela Emulation
Technologies.

45

3) KITDE DESENVOLVIMENTO DE LNS PARA WINDOWS modelo 34303:

O kit de desenvolvimento de LNS para Windows fornece softwares requeridos
para aplicagio LNS em Windows NT e Windows 95. Estas aplicacdes podem ser locais,
ou seja, na mesma maquina do servidor ou aplicagGes remotas através da rede
LonWorks.

O Kit inclui os seguintes componentes:

- Servidor de Objeto LCA (OCX),

- Servidor de Dados LCA,

- NSS for Windows server e database manager;

- Drivers de rede para o PCNSI e PCC-10;

- Visual Basic e codigo fonte ANSI C;

- Um ano de modelo 91000-0 LonSupport para LNS/LCA.

Descrigdo:
a) Servidor de Objetos LCA (0CX):

O Servidor de Objetos LCA converte objetos LNS (nos, roteadores, etc)
gerenciados pela NSS para Windows num padriio de objetos OLE. Representando
objetos LNS como objetos OLE, o Servidor de Objeto LCA simplifica os
desenvolvimentos de aplicativos para Windows 95 ou NT. Os controles OLE s&o
de alta performance, com 32 bits, com objetos programaveis em linguagens
independentes que podem ser usados com uma variedade de ferramentas de
desenvolvimento, incluindo desenvolvimento de aplicativos rapidos em Visual
Basic. O servidor de objeto fornece também uma ferramenta central capaz de
compartithar informagdes e objetos entre componentes ¢ ferramentas multiplas.

O servidor de objeto pode tambem ser visto como uma nova linguagem para
ferramentas LonWorks baseado numa automacio OLE. Esta linguagem é
facilmente programavel numa variedade de ambientes, incluindo Visual Basic €
Visual C++.

b) Servidor de Dados LCA APL

Assim como o Servidor LonManager DDE, o Servidor de Dados LCA API é um
instrumento de alta performance para monitoragao de sistemas e controle usando
os servicos e dados fornecidos pelo NSS para Windows.

Usando o servidor de dados, as aplica¢bes dos usuarios podem observar valores
das variaveis da rede ¢ mandar mensagens ¢ podem mudar os valores das variaveis
da rede ou enviar mensagens para efetuar operagbes da rede. Para simplificar
aplicages dos usuarios, o servidor de dados converte dados da rede em um
formato de strings que podem ser exibidas.

¢) NSS para Windows:

46

O NSS para Windows fornece servigos de alio nivel para instalacdo de redes,
manutengdo, monitoramento © controle para redes LonWoks com um Unico ou
com multiplos canais com mais de 32385 nos. O NSS para Windows admite
usuario local assim como usudrios remotos (usuarios et diferentes nos da rede). A
interface de programagdo € a mesma para ambos 05 usudrios e eles tem acesso a0s
mesmos dados € servigos NSS. O NSS para Windows ¢ acessado por host cujo
sistema operacional seja Windows 95 e Windows NT usando o servidor de objeto
LCA e servidores de dados. Para dar suporte aos usudrios remotos, 0 NSS para
Windows fornece servigos de gerenciamento que permite aos clientes remotos
acessarem O sistema € 0 monitor de outros usuarios remotos. O NSS fornece
servigos de gerenciamento de diretérios que permite aos usuarios remotos
acessarem servigos de aplicacdes especificas das quais eles necessitam.

4) KIT DE DESENVOLVIMENTO PARA CONSTRUCAO DE REDES
LONBUILDER:
Fungdo: Contém ferramentas & componentes necessarios para desenvolver nos
¢ redes LonWorks.
O kit inclui:
a) LonBuilder Developer’s Workbench: o qual se subdivide em 3 ferramentas de
desenvolvimento:
- Sistemas de desenvolvimento de n6s multiplos;
- Gerenciamento de rede;
. Analisador de protocolo.
4 Transceivers FTM-10 que permite integrar 0S nos criados pelo LonBuider
Developer’s Workbench com nos de uma rede externa.
¢) Servidor DDE permite criar interfaces graficas para o usudrio das redes LonWorks
usando aplicativos do Windows que possuem capacidade dinamica de troca de
dados (DDE).
d) Placa PCNSI de interface entre redes LonWorks e 0 PC.
e) Umanode assisténcia técnica.
Descrigdo:
a) Software LonBuilder:

;o software usado para criar nos e redes LonWorks. Inchui;

47

- Um editor, um compilador, um debugger usado para criar e corrigir 0s
programas aplicativos para o Neuron Chip;

- Gerenciador de rede usado para instalar e configurar os nés durante 0
desenvolvimento da rede,

_ Um analisador de protocolo usado para monitorar o desenvolvimento da rede
¢ interpretar suas atividades, permitindo debugar a rede.

Vantagem:

b)

c)

d)

€)

Redugiio no tempo de desenvolvimento da rede.
Hardware de estagiio de desenvolvimento (Development Station Hardware):

Esta estagdo é um rack expansivel que inclui 2 nos LonWorks, um deles para
gerenciamento de rede e outro para analise de protocolo. Inclui processador
LonBuilder que se comunica com uma rede externa ou com dispositivos de
poténcia. Esta estagdo de desenvolvimento simplifica o debug de redes de controle
e suporta até 6 emuladores.

2 Neuron Emuladores:

Este par de nos sio usados com © Neuron C debugger para rodar e fazer o
debuger nos programas do Neuron C e para testar 0s transceiver € as entradas ¢
saidas.

O emulador e o Neuron C debugger sdo usados para setar os breakpoints,
modificar as variaveis e a aplicagio da rede através de dois programas
executados em paralelo. Eles podem se comunicar entre si , com o gerenciador da
rede, com o analisador de protocolo através da topologia de rede incluida na

estacdo de desenvolvimento.

Cabo e Adaptador de interface Lonbuilder:

O adaptador de interface ¢ uma placa compativel com barramento ISA de 8bits
pode ser instalado em qualquer computador compativel com um IBM PC. Este
adaptador possibilita uma conexao com taxa de 10Mbps entre um PC € a_estagao
de desenvolvimento.

Este adptador reduz o investimento total pois permite que 08 projetista usem seus
PC’s com as ferramentas Lonbuilder.

Um cabo de 3 metros é usado para conectar 0 adpatador de interface & estagao de
desenvolvimento.

Roteador Lonbuilder:

quando instalado na estagao de desenvolvimento e usado com 2 transceivers
este roteador conecta a topologia de rede existente na estagio desenvolvimento
com qualquer tipo de rede externa. Pode-se configurar os transceivers para ligar

estagdo de desenvolvimento a canais de comunicagio diferentes.

Transceivers Lonworks:

g)

h)

),

48

O kit de desenvolvimento Lonbuilder inclui quatro adaptadores SMX Lonbuilder e
quatro FTM-10 Transceiver. Estes quatro adaptadores SMX e os quatro
transceiver (que sdo compativeis com o adaptador SMX) sdo instalados
respectivamente, dois nos neurons emulators, um na estagio de desenvolvimento,
e um no analisador de protocolo.

kit Gizmo 3 Lonbuilder:

Este kit inclui uma colegdo de dispositivos de entrada/saida Uteis para
desenvolver aplicagdes baseado na tecnologia Lonworks, uma placa de interface
para aplica¢Bes Lonbuilder e um cabo para conectar os dois. Esta interface de
aplicagdo deve ser instalada no emulador, Os dispositivos Gizmo 3 ja possuem
hardware que pode ser usado para desenvolver uma variedade de nos.

Diversas amostras de progrmas para o Neuron C estdo incluidos no kit para
fornecer solucdes para problemas de entrada/saida.

Este kit também pode ser usado para criar um né gue age como um gerador de
testes dos outros nos.

Kit de interface de aplicagdo:

Este kit inclui uma placade interface de aplicagéo e cabo usados para conectar 0as
entredas e saidas e o tranceiver ao emulador Neuron. Para permitir o teste em
circuito da parte de hardware do né, o kit inclui a interface do modulo de
aplicagiio Lonbuilder para nos baseados nos modulos de controle Lonworks; e um
adaptador de interface de aplicagio Lonbuilder, para usar com o adaptador Neuron
3150 ou 3120 que serve para nos que ndo sdo baseados nos madulos de controle
Lonworks.

Servidor DDE Lonmanager:

Este servidor facilita a criagio de uma interface grafica para o usuario numa rede
Lonworks. Usando este servidor qualquer aplicativo do Windows que permita
troca de dados dinamica (DDE) pode monitorar ¢ mudar o valor das variaveis da
rede e monitorar e enviar mensagens.

Placa de Interface para PC PCNSL

Esta placa se constitui num barramento ISA que promove uma interface entre o
PC e a rede Lonworks, interface esta de alta performance capaz de transmitir
228 pacotes por segundo.Os PC’s podem ser usados para fazer um controle,
monitoragio e gerenciamento centralizade da rede Lonworks. O PCNSI usa o
transceiver SMX para fazer a interface para qualquer meio de comunicagio
compativel com Lonworks.

Como usar o Lonbuilder Developer’s Workbench:

49

O Lonbuilder Developer’s Workbench é usado para criar n6 sob medida para
sua aplicacio. Na verdade, estes nos sdo dispositivos Lonworks sob medida que
combina um Neuron Chip, /O, transceivers para comunicagio , ¢ uma aplicagio que
interage tanto com o dispositivo de 1/0 local quanto com outros nés da rede Lonworks.
A figura seguinte ilustra os componentes de um nd sob medida tipico:

Usando as ferramentas do Lonbuilder, um projetista pode criar estes nds com
um minimo de treinamento e sem ter que inventar ferramentas ou aprender complexos
protocolos de rede. As ferramentas Lonbuilder sdo usadas com os componentes
Lonworks OEM como descrito a seguir:

- Escrever e compilar codigo das aplicagtes para o Neuron Chip usando Neuron C:

Neuron C é uma linguagem de alto nivel baseada em ANSI C . Escrever codigos
para comunicar com outros nos na rede Lonworks requer somente duas linhas de
c6digo: uma para declarar uma varidvel na rede e outra para atribuir um valor a
esta variavel. O protocolo Lontalk permite que estas variaveis sejam
compartilhadas entre qualquer grupo de n6s da rede Lonworks. Interface com
dispositivos de hardware complicados se torna tarefa simples. Por exemplo,
controlar um triac necessita de apenas duas linhas de c6digo: uma para declarar
um dispositivo triac de I/O e a outra para atualizar o valor do atraso do triac. O
software Lonbuilder inclui um editor que facilita a entrada de codigo. O
complilador Neuron C compila o codigo da aplicagdo e como compilador e editor
sdo integrados, os erros de sintaxe s3o automaticamente colocados em destaque
no editor junto com as mensagens de erro do compilador.

- Implantar ¢ testar as aplicagdes em multiplos nos da rede Lonworks: O software
Lonbuider inclui um gerenciador de projeto que cria automaticamente um mapa de
memoria para todos os nés, carrega estes nds e comega a executar a aplicagéo-
tudo isto com um Gnico comando. Este software pode carregar o software da
aplicacdo usando uma interface de alta performance ligada ao hardware
Lonbuilder, ou seja da rede para os né sob encomenda.

- Usando o Neuron C e o neuron emulador debugger para fazer o debug dos
softwares das aplicagdes.

- Neuron C debugger permite ao projetista parar o programa em qualquer ponto,
executar 0 programa passo a passo, e simbolicamente ver, modificar ¢ monitorar
as variaveis no programa.

LONBUILDER NEURON EMULADOR

O Lonbuilder Neuron Emulator é um processador que pode ser instalado no
hack da estacdo de desenvolvimento. O emulador é a primeira ferramenta usada para
desenvolver nds Lonworks. Ele é constituido pelo Neuron Chip 3150 com 64 Kbytes de
RAM para simular o hardware e fazer o debug do software. O emulador permite ao
projetista executar um software independente da procedéncia do hardware, assim o
software pode ser desenvolvido antes mesmo do hardware estar disponivel.

50

Cada Emulador pode acomodar até duas placas de expansdo para testar o prototipo de
1/0 e o hardware do transceiver.

O Neuron emulador LonBuilder inclui um Neuron Chip 3150 com 64kbytes de
memoria RAM para codigo e dados e outra RAM de 64kbytes de controle. A RAM de
controle é usada pelo Neuron C Debugger para setar breakpoints e detectar acessos a
memoria fora do mapa de memoéria da aplicagdio. Dois conectores de expansdo
permitem a comunicagdo do Neuron Chip e dos dispositivos 1/O com dispositivos
externos de I/O através dos transceivers. Qutro transceivers ¢ incluido para conectar o
emulador com a rede da estag@o de desenvolvimento LonBuilder.

Um oscilador configuravel via software fornece o clock para o Neuron Chip.
Este clock pode ser configurado para trabalhar em 625 kHz, 1,25 MHz, 2,5 MHz, 5
MHz ou 10 MHz.

Na seqiiéncia, estaremos incorporando todo o levantamento de campo efetuado
no Tefer, a0 qual denominamos Catalogo.

Levantamento do sistema de transportadores e guindastes do Pier 1 & 2

TAG'S LOCAL LARGURA | CENTRO A | FLEVACAD | VELOCIDADE | MATERIAL | TONELA- | TENSAQ COBERTURA METRAGEM
(POL) CENTRO (GRAUS) (M/SEG) DAS/ (NMM) TOTAL (M)
™) HORA TIPO CALIBRE | C/EMINDA
G-243 | GUINDASTE 01 36" 945 0 1,22 ADURD 300 61 3B0-B | V6 X116 22.50
G-247 | GUINDASTE 02 367 2.00 0 1,22 ADUBO 300 6.1 330-8 Y16 Xil6" 2250
G-248 | GUINDASTE 03 W 9.00 0 1,22 ADUBO 300 ol 0B | Vie Xi/le” 250
G-250 | GUINDASTE 04 6 .00 0 1,22 ADUBO 300 6.1 330-B | ¥16TXKIA6 1.5
G251 | GUINDASTE 05 6 5,00 0 1.22 ADURO 300 6.1 130-8 | F6TRLAG" 2250
T-01 SETOR 01 bId 33.81 0 291 ADUBD 300 63 Z0-8 | Vie"Xile” 70.50
T-03 SETOR 01 24" 3381 0 291 ADUBO 300 63 | 2208 | V1o Xi/l6" 70.50
T02 | SETORO1 24 68 55 0 1,93 ADUBO 300 63 220-B | ¥i6"X1/16" 139.50
T-04 SETOR 01 247 68 55 0 293 ADUBO 300 63 220-B | ¥16"XI/16" 139 50
T-05 SETOR 01 2 133,00 0180 247 | ADUBD 00 | 218 208 | X6 X116 275.00
T-06 SETOR 0f 2" 133.00 0+3+0 247 ADUBD 300 T218 2208 | ¥Vi6 X116 275.00
T07 SETOROI | 24° | 13300 TOtRHD 247 ADUBO 00 218 2208 | W16"X1ii6” 275.00
T-08 SETOR 01 74 133.00 0+8+0 247 ADUBD 300 218 220-B | ¥16"X1/16™ 27500
T-09 SETOR 01 24 720 [2,96 ADUBO 300 52 220-B | ¥167X1/16” 1750 |
T-10 SETOR 01 24" 7.20 0 2,96 ADUBO 300 52 220-B Via"Xl/1e’ 17.50
T-11 SETOR 01 24 7.20 4] 2,83 ADUBO 300 5.4 220-B | ¥167X1/16 17 50
I-12 SETOR 01 24 7.20 o 283 ADUBO 300 54 220-B Y16 X116 17.50
T-13 SETOR 01 24 27.20 0 2,93 ADUBO 300 56 2208 | M6 X6 57.50
T-1% SETOR M pl 7T 0 291 ADUBO 00 Sh 220-R WUI6TKTE 5750
Ti7 SETOR 01 247 720 0 203 ‘ADUBO 300 5.6 298 | Vie NI 5750
T-19 SETOR 01 24 27.20 0 2,93 ADUBO 200 56 220-B | 36 K1l6™ 57.50
T-14 SETOR 01 24 §9.80 0 2,93 ADUBG 300 08 2308 | Ale X6 184,00
T-16 SETOR 01 24 89.80 0 2,93 ADUBO 300 68 220-B | 16 X116 184.00
T-18 ~ SETOR 01 24" £9.80 o0 | 293 ADUBG 300 68 220-B | ¥167°X1/16” 184
T20 SETOROI | 24° | w8 | 0 T293 “ADUBO 300 6.8 20-8 | ¥16 X116 184

Tabela 1 - Levantamento do sistema de transportadores e guindastes do Pier 1 &2

51

Continuag¢io do levantamento de transportadores e gunindastes do Pier 1 & 2

TAGS LOCAL LARGURA | CENTRO A | ELEVAGAU | VELDCIDADE | MATERIAL | TONELA- | TENSAD COBERTURA METRAGEM
(POLy | CENTRG | (GRALS) | (M/SEG) DAS/ (N/MM) TOTAL (M)
o HORA TIPO | CALIBRE C/EMENDA
T-21 SETOR 01 24" 89.26 [34 ADUBO 300 59 0B | M6 X6 183.00
[T2z | SCTOROL TS 892% | 0 BE ADUBO 300 59 220-B | ¥167X11s” 123.00
T-23 SETOROF [247 | 8926 [Yy ADUBO 300 59 220-8 | W6 X6 183.00
“T24 | SETOROL [247 | 882 | 0 | 34 ADUBO 300 50 220-B | 3/16"X1/16" 183.00
T25 | SETOROr | 24 | 720 [0 | 292 ADUBO 300 49 220-B | ¥i67X1/16" 17,5
26 | SETOROI | 24 | 12) ADUBO 300 49 20-B | 316"Xi/16" 7.5
i T27 | SElOROl | 27 | 72 —+ T 202 ADUBO 00 49 220-B | ¥ie Xi/le" 17,5
T SETORO1 | 24 IR I YT ADURO 300 19 208 | 36 X1/16" 17.5
[29 | seromme | a0 | 2 | o | 3 ADTRO 300 53 20-8 | 3167X1N16" 57.50
[T3l SETORGL | =2a° | 267 || o | 3 ADUBO 300 55 220-B | V16 Xi/6" 57.50
T-33 SETOR. 01 24" wH@ | e | 3 | AouBo | 300 55 220-B | 3167X1/16” 5750
T-35 SETOR 01 | 23”7 26.79 0 3 ADUBO 00 | 5s 2208 | ¥167X1/16” 57.50
T-30 SETORGT | 7~ 82185 0 2,98 ADUBO 300 67 20-B | ¥6"X1/16" 184.00
T3z | SsETOROT | T 828 | o | 298 ADUBO 300 67 220-B | 3167XI/16" 184
| T34 | GETOROI 24" 82.85 o 2,98 ADUBO 00 6,7 220-B | ¥167X1/16” 184
A6 SETOR 01 | 24" ®Rs | o | ieR ADUBO 200 67 -8 | W6 K6 184
BIGURRLED | SETOROL | 24 1855 | o | O3 ADUBO 300 95 20-B | Vi X116" 10.00
G2 | orERi SETORSE [W af | o | 263 ENXOFRE 500 71 330-B | ¥16°X1/16™ 2
G-242 Vo oz sEToR @2 Y == 2,63 INKOFRE 500 7.1 330-B | ¥le Xiite 2
G | vie ke | % BT 0 [i6 | mooms| s 71| Mo | wexing” n
G252 | GIEW-SETOREz | 36 | 91 o | 283 ENXOFRE 00 7.1 0B | ¥ie“X1/16" 2
Gg5d [omws-EEoRe: | 3 | 91 | 0 | Zen ENXOIRE 800 7,1 330-B | 316X1/16” 2
[T-m1 | SETORO0Z | 427 [36 | 0 | 263 | RNXOFRE 800 | 145 1330-B | 36" X1/16" 150,5
| T-oz | SErorez [4 | ma | 0 | Za | mowme 800 10,5 330-B | 316 X116 150.50
T-03 | SETOR (3 42" 9758 | 6 [24 | moee 00 23 | 330-B | 36 NI16" 206
T-04 SETOR 02 42" 10368 | & | 24 | ENXORRE 300 2,1 BB | Vi6XULE 214.00
T-05 SETOR 02 a” 127,55 7 i3 ENXOFRE 800 | 312 330-B | Vie Xile" 260

Tabela 2 - Continuagfio do levantamento de transportadores e guindastes do Pier 1 & 2

-

o~ e e,

Finalizaciio do levantamento de transportadores e guindastes do Pier 1 & 2

52

TAG'S | LOCAL | LARGURA | CENTRO A | ELEVAGAQ | VELOCIDADE | MATERIAL | TONELA- | TENSAQ COBERTURA METRAGEM
(POL) CENTRO (GRAUS) (M/ISEG) “DAS/ (N/MM) “TOTAL (M)
™) HORA TIPO | CALIBRE | CEMENDA
-06 |SETOR0Z| 42 1236 7 238 ENXOFRE/A| 800 29,5 330-B | 316 X6 250
DUB
T.07 |sETORO2| 427 39 7 252 ENXOFRE/A| 800 143 | 330-B | 316 X116 87
DUB
T-08 |sEorRez| 42 £l 7 252 ENNOFRE/A| 800 14,3 10-B | 367X 87.00
LuB
T-09 |SErOROZ| 427 6,55 0 2,52 ENXOFRE/A| 800 5.6 330-B | ¥Vie"XU16" 17
DUR
T-10 | SETORO2 | 42" 6,55 0 242 ENNOFRE/A| 80D 56 08 | ¥16X116” 17.00
DUR
T-11 | seiomoz | 427 22420 01440 239 ADUBO B0 | 287 | 330B | Ve X6 | 466
Tz |smore [@ 7243 01440 2,39 "~ ADUBO B00 8,7 330-B | Vi6"Xi/16 | 466
T 13 | sETORDZ | 427 91,4 4 2,39 ENNOFRE/A 80O 18, 330-B | Me"Xide” | 194 |
DUB
[T-1a | sETOR0Z | 45 914 [2,39 ENXOFRE/A| 8OO 181 | 330-B | ¥ie"Xi/le" 194
DUB
T-15 | SETOR®2 | 42 65 0 28 ENXOFRE/A| 800 57 330-B | M6X1I6" 17.00
DUB
T-16 | SETorRoz | 427 6.5 0 28 ENXOFRE/A| 800 57 330-B | 3716 7%1116" 17
puB
T-17 | SETOR02 'H 2242 0+1440 230 ~ ADUBO 800 28,7 3308 | 36 X6 466
T-18 | sETORO2| 42 2242 0+14+0 239 ADUBO 300 28,7 330-B | HI6 X6 466
T-10 | sEromuz| 47 95,3 3 2,30 ENXOFREA| 800 | 16,7 | 330-B | 316 X1/16" 201
DUB
F-20 | SuToR o2 a2 553 3 239 ENXOFRE/A 500 16,7 330-B | ¥ie X6 201
DUB
T-21 | sEToRO2 | 427 | 64 0 | 25 |ENNOFREA| 800 55 3308 | 316 X6 17.00
DUB
r-22 | sEroroz| @27 6,4 0 25 ENXOFRE/A| 800 55 | 330-B | Vi X6 17.00
DUB
T-23 | sEToRz | @ | 222 +14+0 239 | ADUBO | 800 287 308 | M6HINGT 466
T-24 | SETORGZ| 42 2242 0F14+0 T 239 ADUBO K00 28,7 330-B | Vie“X116" 166
r-25 | sfoRez | 42 27,4 8 2,61 ENXOFRE/A| 800 | 127 | 330-B | ¥16"X1A6" 64
Dus
T-26 |SETOROZ | 42 274 8 2,61 ENXOFRE/A| 800 12,7 330-B | M6KINE" 4
DUB
CT-CAR - | selukoz [g2~ 285 [24 ADUBO 800 56 308 | M6XI6”
Tl
CT-CAR - | SUToRez | 327 | 285 [} 24 | ADUBO 800 56 | 330 | ¥ie Xiis”
T12
CT- CAR - | sETOR 02 127 285 Lol 24 ADUBO 80¢ | 56 | 330-B | 36"NI/6”
T17
CT-CAR- | SETOROZ | 427 285] 24 ADUBO | 800 | 356 | 330-B | a6 Xi/i6"]
Tig
[CT-CAR - T sETOR®2 | 427 285 0 24 ADUBO 800 56 30-B | VI6TXI6"
7
CT~CAR- | sETOR02 | g2 2,85 0 24 ADUBO 800 56 BB | V167KIA6"
124

Tabela 3 - Finalizagdo do levantamento de transportadores ¢ guindastes do Pier 1 & 2

TEFER - Terminal de Fertilizantes - Pier 1

E

=

2 T35/6 - W8,64 m PP

:* -

i |

8 T334 - 189,84 m E E E [i

3 RII& g8

2 e AR

o T31/32 - 189,64 m all e —HH| s

= BHE—EQER

g

g 72930 - 10364 m T T T T -+

C
E E E E
2l % £ 14
= =i 3
| 1s ol e
N an o ~
= - - -

E

= ||

2 T19/20 - 109,64 m r T T I e

p -

L

] | -

) TITAS - 109,84 m E ; ; E -—
=]

*® ::.‘. ~~ [&

ﬁ B 1 1 | 1

& T1546 - 109,64 m 2|8 El|E -

= =

z B

g TI344 - 18964 m —

=1

Os comprimentas indicados com tag's
E E E E | tem como referenciatambor motriz e de
e .] ¢ | retorno
L - - -
NS w | | & | GTE- Guindaste -TAKRAF cap 300 tonfh
= s L = | Pésototal 239,354 ton.
MORTE
[— T4 - §855m T - 6855m A]
[— 1Z-13Mm I -n6tm e |
GTE 243 GTE 248 GTE 250 PIER 1 GTE 247 GTE 251

53

TEFER - Terminal de Fertilizantes - Pier 2

54

r
= - T24 - 2428 m J
|

01 62 03 04 85 0B O7 G5 09 40 41 12 13 14 15 16 17 18 19 20 21

|

— 723 - 22420m
]

ARMAZEM 6 { 230 x50)= 11,500 m*

-y -
1
3
AN
3 3
L _—
|
== T8 - 224 m J
01 02 03 02 05 06 87 08 99 10 14 12 13 14 15 16 17 18 19 20 2
ANy T - 2420 m I
1
] ARMAZEM 4 (230 % 50) = 11.500 1
e =
~= 2
2 ;-
S &
= 3
oy IOy MR
© = — T12 - 22420m |
: £ |n1aznsu4nsusevnsnsmﬁuﬂmﬁmﬂ1s1azuzq
. (-3
5 o — T11 - 22426 m l
i Ex]
4 =
¥ z ARMAZEM 2 { 230 % 50) = 11.500 m*
o i
o £
g 3
76 -123,60 m .+
0s comprimentos ndicados com tag's
tem comae referencia tambor mofriz e de
-+~ TS - 12155 m T retorno
3 GTE - Guindaste-TAKRAF cap 300 tonh
T . Pésototal 239,354 ton.
-
S |
1 [--]
HORTE @ 3
%
- 13 | || _ N
| — 2.71Hm ™ - 7336m -— J
GTE 244 GTE 212 GTE241| PIER 2 GTE 262 GTE 264

55

DIAGRAMA DE INTERLIGAGAO DO SISTEMA DE
PESAGEM CONTINUA

finletes da ponte

‘,....-"""’F de peasgem do
tranzportstor

A, B, €, = Cetula de carga com ginal de saida de 2my - IP &5
E = Gerador de pulgos 2 pulsosmm
F = (-aita de jungao eletrica

Caho 10 % 28 AWG Cobre
PE + shieldado + dreng

/
Fihernet 10Rase2 g e
10 Mbits - dizt. max, 200m Lases orinter g
MoDULO | Cabo coaslsl thinnet + conector BC o
METTLER
F
ETHERNET
PC + SOFTWAARE METTLER
GERAMDO MASSA DE DADOS DA PESAGEM

56

Descriciio técnica alguns modulos de automagio.

Modulo AJ-10

E composto por 02 entradas analogicas de 16 bits € podem monitorar 0 — 20
mA,0-10Ve entradas resistivas de 100Q & 15k€2.

Operam com tensao entre 16 4 30 VAC ou VDC, mantendo-se a mesma tensdo
de alimentagdo dos sensores.

Modulo AO-10

£ composto por 02 saidas analogicas de 12 bits e podem controlar 0 — 20 mA,
0 - 10 V atuadores.

Operam com tensdo entre 16 4 30 VAC ou VDC, mantendo-se a mesma tensao
de alimentacio dos atuadores.

Modulo DI-10

E composto por 04 entradas digitais podem monitorar contatos secos Ou
entradas de voltagens 0 - 32 VDC, mantendo status por led’s independentes.

Operam com tensao entre 16 2 30 VAC ou VDC, mantendo-se a mesma tensao
de alimentacdo dos sensores.

Module DO-10

E composto por 04 saidas digitais configuraveis por DIP switch.
Operam com tensao entre 16 4 30 VAC ou VDC, mantendo-se a mesma tensdo
de alimentagio dos atuadores.

Modulo DIO-10

£ composto por 02 entradas digitais e 02 saidas a rele. As entradas digitais
podem monitorar contato seco ou entradas de tensdo em 31 VDC.

As duas saidas a rele mantém continuamente 2 A e pico de 6 A, 30 VAC ou
vDC.

Cada posigo é habilitada por DIP swith Manual /Desl/Automatico.

Operam com tensio entre 16 4 30 VAC ou VDC, mantendo-se a mesma tensdo
de alimentacdo dos atuadores/sensores.

Para que possamos representar graficamente nOsso projeto em rede LonWorks,
iremos utilizar uma analogia com circuitos a rele propiciando ao leitor uma facilidade
no algoritmo de programagdo € logica de operagao.

57

De posse da planta dos transportadores do Tefer Pier 2 poderemos observar a
seqiiéncia de construgio de uma dos lados do sistema, como segue:

Pier 2 — Armazém 2
T2—T3—T5—T7A—T9A—(T12 ou T11) — moega de 01 a 21

Pier 2 — Armazém 4
T2—T3—T5>TTA—TIA—T13—T15—(T18 ouT17) — moega de 01 2 21

Pier 2 — Armazém 6
T2—T3—T5—TTA—>TIA—T13—T15—T19 —»T21—(T24 0uT23) — moega de 01

a2l

Onde T significa Transportadora.
Iremos desenvolver nosso projeto na rota Pier 2 — Armazém 2

Com esta definigdo poderemos comentar a logica de funcionamento do sistema
de transportadores, durante o processo de descarga de graneis.

Para que o sistema possa entrar em opera¢do todos os seus componentes
devem estar habilitados, para que possam ser energizados impondo assim o inicio da
operagio de descarga pelos transportadores a comando do operador.

Temos que comentar, que obedecendo a seqiiéncia de construgdo, em caso de
parada de um transportador todos os anteriores, parardo. A menos mo caso de
acionamento do cabo de seguranga ao longo de todos os transportadores, o sistema para
por completo, para averiguagfio do ocorrido.

O esquema em logica por rele exemplifica:

)

5

38

Biagrama elétrico do sistemza Pler 2 « Armazem 2

i Cpriatos s cabios de segrnarca
Ty il 00 SEQULIGS fKIT [arsia
Lol 5 o
R
=R
ol TR
s Rele tracho T2
b A L ’
T2
oL TFA
4{"\‘.—_?.—_ Rele racho T7A
S
™A
A TS
Y

7 Feats mecho T5
L—
Ta

1t

-~

T

P oL T3
:’:J} oo Pt trBChis T3
T3
r"‘ oL 1
3 R i T2
\'—J !~ A &
2
TtY o Ta
24T {0 o T2
44 { J z’ Rede trachi T12
T2
T2
. e LT
"y) 5. Reie travha T11
T
Wy % Adomge 01 2 ¥

59

Analisando o diagrama acima temos:

O comando de ligar, permitido pelos contatos dos cabos de seguranga nao
atuados (fechados), dando inicio a operagao do sistema, sendo o anterior partindo o
posterior. Esta logica de circuito, nos permite na ocorréncia de falhas ou atuagio dos
dispositivos de protego, desligarmos somente 0s transportadores em falhas e seus
anteriores. Com auxilio de temporizadores, podemos temporizar as partidas posteriores,

somente apds Os motores anteriores estarem em regime nominal de rotaggo.

Do diagrama temos, 29 relés (T9. T11 e moega 01 .21) o que em
representagio LonWorks serao pontos de saidas digitais da rota e 28 contatos secos
oque nos serdo pontos de entradas digitais.

Podemos agora identificar, a economia na aplicagfio da Tecnologia LonWorks,
pois todos 0s sensores (contatos dos cabos de seguranca, alinhadores de esteira) ¢
atuadores (solendides), ndo necessitardo de cabos elétricos até o painel de comando ¢
sim até um modulo LonWorks (entradas ou saidas digitais, no caso em estudo)
interligando por sua vez com um cabo par trangado estes modulos a0 painel central.
Favorecido ainda pela inteligéncia dos Neuron chips dos modulos.

Para melhor visualizacgo do descrito e da migrac8o de tecnologia, iremos
mostrar o mesmo circuito em Tecnologia LonWorks com seus modulos DI-10 e DO-10,
j4 descrito anteriormente. Lembrando que todo o entertravamento € desenvolvido com a
aplicagdo do software.

60

_amﬂ.ﬂ ,L_Mww [0 H..@m“_.._ ﬂﬁi] q.mﬂ._m.,u ﬂ_,ﬂua_ ﬂ%Mﬁ ?HWE ﬁ.@n_mm _wm.__.%@_ 0010 U_UM_.@ wn._ﬁ.] _L‘En.wﬂ

.#

Pier 2 - Arreazem 2 Par trangadn

»

CAMAL 2

ROTEADOR HCLTA-F e e s e

o O 16 RIS R olag | [Okrd | { oo oD | [DO-10] [Do-16] | Do-10] | DGI0] | BO-10 D10} [DO-10 | | DO-10
Pigr 2 < Armazem 4 .
Estamos representanddo duas rotas de transportadores, coneciados & um roteador que pela terface a um PC.
Cada moduio Di-10, recebe 04 saidas
Cada module BO-10, externa 04 sadas
e RELE D) TRECHQ Tn
A8 DE 5EG. _ BOTORIRA RELE DO TRECHO Tn
i . -k (- e
D10 e DO-10 N
. o =7
4 e L - gi7i
CONTATO DR SELETORM ATUADCR A MOEGA _ i
BOTOEIRA ATUADOR DA MOEGA

61
>

Representagio de um modulo da rede em LonWaorks

A antrsda do sensor de LEiperaiug s
devera ser coneciada 2 saida da
valvula para simalar variegles de

temperatira iLon

Al 1 Sensor de lemperatura

AD- 1.Contalo de simulagao

Entrada digial invertida e W:a w ﬁwm ,.Mmﬂo VENaCoes via
arazada para simular interface ot
realimentacia na
antradas.

DIO- 1. Scheduler Simulator

Py x ’ _ AO-1 J

Channel 1

p " b
v e v WU VU VW NV S Y e v Y N e e e e e M W e e W W e W e W W Y

62

Vista em planta Tefer do sisiema de monitoramento

Balanca 1

Balanca 2

el LANIECE

f—— EAFIS3

S e e

W T3
g & 8
; & §
£ E
< Central de Operagao <
do Terminal
renritoramento w
§
E
g piie:] LR
Rede em fibra otica
Pier 1 ~| Pier 2 @

63

Posicionamento do Sistema de monitoramento digital do Yefer

T T T
| i m
g E
m 3]
| W P m g q
i | P m) :
ﬁ_ _ m . o i
mEEy N m | _
w oL - 8L s U GLGE - ¥E). b WL - ZhL W ESE - B & et
i T S [[R St AW T, T, e IR P oo, eierieet) P s et
WOy - KL L w528 - gEL b W02 - b HOEEL - 2L At
| [[| i i T N
I 7 —.
i |m i __ i i | | — m _ _ne
wogzts - 8ZL e W o9E'ER - ZWL s W T - il w g} - 8L o,
i] == 1 _ =11 j I I -
W0z« §EL i W 37’68 - 7L — W arL - 6L gl - 5) -
| i i 1 T ._q _ " _ 1
| | |
i i |
1 4 2 . ! 4 I3 m
m e B 2 BB gl |:
ke E § f L€ ‘&l B B [LE S b
] : SR AN AY L
= - =
_ - - - mm«m w.q. ﬂ
| :
N 5
* mEig 4 ﬂ M
LEF . = 1 o 4 &=
A0S L = (06 X DEE) € WIAZYRNY %M%“uhm..wz L OOSbE = 06 % 052) | WITYINEY g
o unLED @ I I

GTE 251

GVE 247

PIER1

GYE 250

GTE 248

GIE 243

64

Capitulo V

V.1 Conclusio

No modelo proposto, entendemos que a mudanca de tecnologia de automagio
¢ controle do sistema de descarga de graneis trara um excelente incremento de
qualidade e confiabilidade no gerenciamento operacional, sendo esse modelo uma
ferramenta de administragio do terminal.

Estamos propondo, é claro, um passo teorico embasado em observagdes de
campo e vivéncias do cotidiano operacional do Tefer. A coluna mestra desse modelo
estd focada no sistema de balancas que irdo retratar por intermédic do software
especifico, quanto e de onde recebemos e para quem e como distribuimos . Todo o
restante do sistema de automagao estara voltado 4 seguranca intrinseca dos operadores €
do processo de descarga de granéis.

Quando propomos a supervisio por cameras de video interna e externamente
ao Tefer, viabiliza-se um controle eficaz do movimento logistico em sua fase
operacional e de manutengdo, sendo esta, parceira indispensével para esse modelo.

Temos também plena consciéncia do grande desafio que existe em adaptar um
terminal a uma nova tecnologia, lembrando que nada se fez quanto a chuva, que por sua
vez, simplesmente, aborta determinadas operagdes de descargas, tendo esta ou outra
tecnologia de automagdo implantada.

Ressaltamos a real necessidade da educagdo continuada neste processo, pois
temos certeza que com a methor formac@o de nossos colaboradores retornaremos com
melhores indices de rentabilidade final, diminuindo também o retrabalho e o namero de
horas/ maquinas paradas.

Fica-nos a certeza, que ndo estamos no final e sim no inicio de grande
trabalho em um terminal brasileiro.

ANEXOS:

DADOS ESTATISTICOS DO PORTO DE SANTOS

MOVIMENTO ANUAL (em toneladas)

1.997 1.998 1.999
TOTAL 38.472.130 39.940.386 42.675.507
EXPORTACAO 17.791.815 19.401.126 24.264.690
IMPORTACAO 20.680.315 20.539.260 18.410.817

MOVIMENTO DE NAVIOS (em unidades)

1.997 1.998 1.999

TOTAL 3.975 4350 4.018
MOVIMENTO DE CONTEINERES (em unidades)

1.997 1.998 1.999

TOTAL 580.592 564.948 546.972
PRINCIPAIS MERCADORIAS MOVIMENTADAS (em toneladas)

MERCADORIA 1.997 1.998 1.999
ACUCAR (E) 2.378.348 3.668.613 6.965.010
CAFE (E) 702.750 467.898 524.463
SUCO DE LARANJA (E) 1.175.488 932,353 1.053.110
SOJA EM GRAO (E) 1.866.622 2.089.040 2.560.863
FARELOS (E) 1.318.186 1.700.687 2.157.873
PAPEL (E) 194.825 210.966 311.625
TRIGO (D 1.006.624 1.537.145 1.713.105
SAL (CABOTAGEM) 555.109 662.726 690.142
ADUBO (1) 2.402.846 1.304.185 1.880.331
CARNE (E) 84.851 94.732 144.043
GLP(EeY) 1.061.862 976.421 589,041
LEO DIESEL (E) 530.178 1.407.940 1.369.445

E = Cargas de Exportacio
I = Cargas de Importacdio

66

CARACTERISTICAS GERAIS DO PORTO DE SANTOS

Area
Total 7.765.100 m2
Arca do Porto Margem Direita 3.665.800 m2
Margem Esquerda 4.099.300 m2
Cais
CODESP 53
Namero de Bergos Terminais Privativos 11
Local Extensio Profundidade
Total 13.013 m Entre 5.0¢13.5m
CODESP 11.600 m Entre 6.6¢13.5m
Terminais Privativos 1.413m Fnfre 5.0 13.5m
Armazéns
P\rea Total (incluindo silos) | 499,701 m2
Patios
Parca Total | 981.603 m2 J
Tanques
1255 tanques \ 585.111 m3 J
Dutos
llTha do Barnabé, Sabod ¢ Alemoa | 55.676 m |
Linhas Férreas
Ferrovia 186.784 m
QOutras (guindastes, portéineres, transtéineres) 13.217 m
Total 201.183 m
Linhas Férreas
Descrigdo Efetivo

Com vinculo 1.991

COMPARATIVO DE RENDIMENTO OPERACIONAL

67

Local Natreza da Produtividade Vatiagiio %
Carga tpavio x dia
1996 | 1997 | 1998 | 1999 | 979 | 9847 99/98 | 99/96
Alammoa (4 bergos) TG (Giversos) | 7960 | 8300 | 9.624 9.251 43 16,0 3.9 16,2
i Bornabé (2 bargos) | LG (diversos) | 1900 | 2761 3677 | 3.687 453 33,2 03 94,1
Sahoé (5 bergos) LG {sucos) 3480 | 4035 | 3279 | 5272 159 (187 | 608 51,5
8G 1170 | 1857 | 1573 | 2130 587 | (153 354 82,1
(diversos)* 3610 | 4428 | 5636 | 4539 22,7 273 (15,5) 25,1
oc 3200 | 4234 | 5257 | 4107 32,3 24,2 21,9 283
CC(ro/ro) 1850 | 2034 | 2608 | 1847 99 282 | (292 | (02)
CGiradnon
Valongo ao Arm. 12 CG 530 625 697 797 17.9 11,5 143 50.4
(6 bergos)
Arm. 12" ao 23 (9 bergos) | CG 550 693 944 1536 26,0 36,2 62,7 1793
cC 3180 | 3348 | 5289 | 5.638 53 58,0 6.6 71,3
SG (sal) 2020 | 2404 | 2279 | 4089 19.0 5.2) 79,4 102.4
SG (agicar) 1470 | 3217 | 6167 | 10587 | 1188 91,7 7,7 620,2
SG (irigo) L1120 | 1449 | 1816 | 1873 29,4 253 3,1 67,2
Frigonifico & Mortona CG 350 697 849 1.050 26,7 25,8 23,7 90,9
(5 bergos) 8G (trigo) - - - 24N - - - -
Arm. 29 20 35 (12 bergos) | CG 745 1071 | 1156 | 1152 43,3 7.9 ©.3) 54,6
CG (ro/ro) 2510 | 3234 | 2868 | 3.122 28,8 L) 89 24,4
CC (rofro) n50 | 3.844 | 4080 | 5383 39,8 6.4 316 95,7
CC (paricors) | 3300 | 3775 | 4777 4693 144 26,5 1.8) 42,2
CC (conv.) 1640 | 2428 | 2678 | 2399 480 10,3 (104) | 463
Ferry Boat a0 Arm. 39 SG (div) ** 1550 | 6.839 | 5904 | 7.194 50,3 a3n | 218 58,1
(6 bergos) 4490 | 5351 | 9134 | 9.106 192 70,7 ©0,3) 102,8
Tecon (3 bergos) cC 2500 | 5654 | 6830 | 9436 25,6 20,8 38,2 109,7
Tefer (2 bergos) SG (diversos) | 3100 | 3215 | 2962 3.401 3,7 (7.9 148 9,7
Fontte: Sisterna de InformagGes jonais 0 SIOP
Companhia Docas do Estado de Séio Paulo — CODESP
Legenda:
LG = liquidos a Granel
SG = Sdlidos a Granel
CG = Carga Geral
CC = Contéiner
SG (diversos):
* (Carvio, cimento, enxofre, adubo, trigo, barrilha e minérios
*+ (Grios, pellets, trigo € agucar
Comparativo do Mil toneladas Variagfio %]
Movimento Fisico 1.996 |1.997 |1.998 ;1.999 97/96 198/97 |99/98 |99/96
Total do Porto
(milhares de toneladas) 36339 | 38.472 | 39.940 | 42.675| 587 | 382 | 685 | 1743

Melhores Movimentos

Melhores Movimentos Anuais

Anuais
de Enxofre
Ano Tonelagem
1,997 1.353.887
1.998 1.351.254
1.999 1.266.751
1.996 1.146.968
1.995 1.114.845

de Adubo
Ano Tonelagem
1.997 2.402.846
1.996 2.255.109
1.987 2.206.682
1.998 2.065.189
1.994 2.043.269

68

P e |

o~ —

— e~

— o~

Y N

69

Forma como o Terminal de Verbrugge disponibiliza suas atividades na Internet
Fonte: enderego eletronico http:\www.verbrugge.nl

VERERUGGE |
s ' Elestronic.

Verbrugge Terminals

Verbrugge Terminals operates its port terminal in the port of Terneuzen, the
Netherlands. Its main specialisations are forest products (1.4 mm ton p.a.) and dry bulk
(appr. 1.5 mm tons p.a.) The service package includes:

- stevedoring

- warehousing

- agencies

- chartering by road, rail, water
- towage and salvage

- in-house customs services

The Port of Ternecuzen

Situated in the estuary of the river Scheldt, the port of Terneuzen hosts many
multinational companies.

Ideally located to serve as a European hub, the port offers an advanced
infrastructure, excellent connections to the major markets, and, most importantly, no
bottlenecks

70

Handling the bulk of the world

Verbrugge Bulk Terminal: Your European Hub!

The Verbrugge Bulk Terminal was construcied in 1986 and is still one of
Europe's most modern terminals. The focus has been on adding value to your products;
screening, breaking, crushing and bagging services are offered in addition to
stevedoring and warehousing gervices. Over the years, great strides bave been made in
dust prevention.

Verbrugge is well equiped to atrange through-transportation of your products
using all existing modes:

- by road, using its own fleet

- by rail, loading block trains using its new loading facility

- by water, both inland and short sea using its own chartering departments.

- Cutting-edge in-house information services are provided.

- Offering a total logistical package enables us to integrate your supply chain

and thereby be highly competitive.

Handling Capacity
Berth Capacity Length 254m
Width 34m

| Draught 12.40m
Vessel discharge capacity 1200 tonneshour |
Vessel loading capacity 600 tonnes/hour
Truck/rail loading capacity 4000 tonnes/shift
2 ganiry cranes with reach of 38m. each

71

Product Treatment

Screening simitaneous undersize and oversize {0 to 10mm) 150 tonnes/hour
Breaking 200 tonnes/hour
Crushing 150 tonnes/hour
Bagging (FIBC's) 300 tonnes/day

Dry Bulk Storage Capacity

Up to 30 different commodities in covered warchousing 230.000 tonnes

Open slorage 70.000 tonnes

Port Related Activities

Ships agency services are provided

Verbrugge Marine handles close to 2000 sea-going vessels per year. In
addition, in-house customs services are provided.
For more information you can contac:

Verbrugge International B.V.

att. Jo Vandeputte

P.O.Box 5

4530 AA Terneuzen

The Netherlands

Tel.:+31 (0)115 — 646330

Fax.;+31 (0)115 — 646380

Telex: 55023

E-mail; jo.vandeputte@verbrugge.nl

72

Bibliografia

- Guia Internet de Conectividade — Editora Senac SP.

Referéncia de pesquisas:

- TEC Tecnologia Engenharia ¢ Comércio de Componentes Eletrénicos — S&o Paulo
- Histodrico administrativo da Fertimport

- Departamento Técnico da Godyear

- Departamento Técnico da Corbras

- Departamento Técnico Tomé Engenharia

Enderecos eletronicos:

- www.echelon.com - Pesquisa da tecnologia

- www.lonmark.com - Pesquisa do protocolo

- www.portodesantos.com.br - Pesquisa sobre o Porto de Santos
- www.verbrugge nl - Pesquisa sobre o Terminal Verbrugge

- www.ebsbulk.nl - Pesquisa sobre o Terminal E.B.S. Bulk

TOLEDO

9270
BALANGCA INTEGRADORA

Para Materiais a Granel

PERSTU ¢ L b =

= Mineracio, siderurgia, pedreira, papel e celulose
m Armazéns, portos e cooperativas

m Usinas de acicar, destilarias de alcool e outras

9270 BALANCA INTEGRADORA TOLEDO

A Balanca Integradora Toledo Modelo 9270 & adequada para
transportadores de comreia de 16 a 72 polegadas e capacidades de
até 6000 th (1. Consiste de irés componentas basicos: ponte de
pesagem, gerador de pulsos painel de conirote.

A ponte de pesagem, de concepgao modular, possui uma ou duas
células de carga, dependendo da largura do transportador de
correia. Em aplicacdes a velocidades elevadas ou mais exigenies
quanto & exafiddo, até quatro pontes de pesagem podem ser
dispostas em séfie num mesmo transportador de comeia.

As células de carga, em virtude do inovador projeto da ponte de
pesagem, reagem apenas as forgas verlicais transmitidas pelo

rolete de pesagem (comrespondentes & carga de material na correia)
& nunca as forcas de atrito entre rolos e correia, forgas laterais e
cargas desceniradas.

Em operacio, o sinais das células de carga (peso) e do gerador
de pulsos {velocidade da comeia transportadora), posicicnado nas
proximidades da ponte de pesagem, sao utiizados pelo painel de
controle para obten¢éio do fluxo de material passante que, integrado
em relagiio ac tempo, resulta na indicagao da quaniidade de mate-
rial transportado.

*y Capacidades diferentes, sob consulta.

CARACTERISTICAS TECNICAS

PONTE DE PESAGEM

x Totalmente eletrdnica: ufiliza uma ou duas célutas de carga,
dependendo da largura do transportador de cosveia.

= TransferBneia direta, sem alavancas, da carga de material na
coreia para as células de carga: respostas rapidas as forcas
verticais e as variaghes instantaneas decargae, o mais importante,
com excelente repetibilidade.

= Construcdo robusta: deflexéo estnuiural desprezivel.

= Modular até quatro pontes de pesagem podem ser instaladas
em sésie com um Unico Paine! de Controle, proporcionando
também grande flexibilidade em caso de necessidade futura de
maior exatidao.

a Versatit um futuro aumento significativo na capacidade do
transportador implica somente na troca das células de carga por
outras de capacidade nominal superior.

= Instalagio: simples, entre as longarinas do transportador,
requerendo apenas quatro furos passantes.

= Nivelamento/Alinhamento: faceis, precisos e pesmanentes com
buchas de ajuste e parafusos de trava, dispensando calgos e
assemelhados.

= Perfii bao: reduzido espago necessario entre a correia de carga
e a de retormno.

m Danos por sobrecarga: nerthum; céahilas de carga protegidas por
limitacdores mecanicos.

= Grampos ajustaveis: faciidade de fixaciio do rolete de pesagem.

m Buchas, grampos, porcas e parafusos zincados: maior resisténcia
a comroséo.

@ Excelente estabilidade operacional: irea de acumulo de
pd/material prejudicial 4 operacao Timitada & ocupada pelo proprio
rolete de pesagem, e inexisténcia de pentos que, com a queda do
material transportado, possam vir a provecar o travamento da
ponte de pesagem.

s Manutengio Zero: inexisténcia de alavancas, elementos mbveis
sujeitos a desgaste como cutelos, coxins ¢ munhdes, e de
limitagdo de movimanto como varbes e gquias paraletas.

u Trava de seguranga: protecio das ceélulas de carga durante 0
transposte ou manutengdio do fransportador de correia.

m Pré-montagem e testes de fabrica: tempo de instalaczo reduzido
ao maximo.

CELULAS DE CARGA

m Flexibilidade: disponiveis em varias capacidades nominals e
dimensionalmente idénticas.

= Faixa de utiizagiio: em geral, 15% a 50% da capacidade nominal
destinada a indicagao do peso liguido, gragas a elevada gama de
capacidades.

u Sinal de saida: 2 mV/V @ capacidade nominal.

u Esvo combinado: 0,02% da capacidade nominal {inclui os efeitos
combinados de histerese, nao linearidade e repetibilidade).

m Agressividade ambiental: excelente comportamento. Construcio
em aluminio anodizado.

m Grau de protegfio: IP-65 (standard). Opcionalmente, com grau de
protegéo IP-67.

GERADOR DE PULSOS

u Instalacio: confrapeso e polia em contato com a parte inferior
(impa) da correia de carga.

m Tipo: dptico etetrfnico. Sem partes moveis sujeitas a desgaste.

= Pulscsfrevolugao: 900 PPR (2 pulsos/mm). Elevada resclucio.

& Agressividade ambiental: excelente comportamento. Construgéo
am Zamak com eixo de ago inoxidavel € mancais com rolamentos
blindados.

m Grau de protegdo: 1P-65.

PONTE DE PESAGEM - DIMENSOES

Veja tambérn o desenho ao ledo

AW

A

]
|

A
+
E !H
§ -
A DE EMBARQUE
LARGURA DA GORREIA W PESO i
16 580 135
18" 750 140
20 800 145
2) 158
ar 1055 170
=" 1208 185
a2 1359 200
- 1512 215
54 1664 230
60" 1817 245
2 2121 280

Valores aproxitnados

05 irés roietes vizinhos
de pesagem {sa necessdiio).

Yo

4 sz

=

B
&

T1]

yy

Eletradutos gafvanizados sem oosturs 112'@
cpixas de pasIagen.
dividipls pam sineis

=] do
de puiscs & ponte de pesagern até painol de
controlg.

L -

42 = apd: s
rave apds 2
etalppho VI H
i ¢, B)
& 848" 4 ga comal %
E;ELI - r e 3
= e L { _—
Longerina do /._
g
.
—wn T 4
1105mm

Correla de
relema

1, Rl

DADOS GERMIS
MATERIAL THA - Padra feideda
PESD ESPECH 2.0-£3 dw®
Ll
ANGULO DE REF L
CABACIDADE MAIA £508E
HORMAL e OO
saa, IO
DE P -
¥ CORREIA Lt
mmmmmn b X .
PESOLINEAR D4 CORREW, -2
PESO DO AGLETE, —

INGLINAGAO DO TRANSPORTADOR
I —

I FORNECIMENTO TOLEDO

SPAN DE PESAGEM \

i
1=
1]

. J_\ Rateta do pesagom

10
1

13
14

15

NOTAS

Qlucddamtahglodabdmdeweserisenbdavbry;ao.

Instalar abalanca & uma distincia tel, do ponto de g 10, que o

encorttra acommodado Na comeia.

Am@awhm&mmmrmmuﬂEummda

mhémm,emdemmmmsde variagiies de tensdo,

Retirar a coberture dotwputador(aloudmpadepmlagéodamrraiademm)

para permitir @ instalagho daf(s) ponte(s) de pesagen. Ratirar também para a unidade

geradorn de pulsos, ¢ necessario.

Amidndageradmndepdsosdevawinsﬂadacu&nhﬂesobamiadecwga

& na posichc indicaga no desenne (antes ou apés ofs) rulete(s} de pesagem).

N&o ar & balence p nstalac8o.

A disthncia minima dotnpodulnngwhndomw(adorﬁcmaindammm

deve ser inferior a 1B5mam.

Odiarﬂedevemlgxmmmdamhdodo(s)mleﬂs)depeugem,se

mmo.owmmmmmrdmem(s)dapummm

num mesmo planc. Nio devem ser utiizados Offset rollers. Hilize corddes de

alinhamerdo.

Aperpendicularidade do{s) roiete{s) de pesag laghio ddiracs

ol corroia deve estar dentro da = 1027,

Oaspagavﬂtunﬁximduperﬁdemunemodamianmdeveemedera

a,5mmm.

Nﬁodmwowhnmdosmboudaseéuasdem.

Paramanutengéo dacalibragio érecomendado oue, apds aferigh inicial, os seguintes

itens sejmem firnemenie sokdados:

5 Os.pmdogaﬂdmdepiboséswhasdutmmpaﬂadm

_ Ds trés roletes de cada tado do(s) Tolete(s) de pesagem as tongerinas do
{ransportador.

Aemmmmregﬂodamlm,mminirMSmmmmaapés

amesma, devewwnﬁuneﬂ#aomiciaﬁaparaqueadeﬁeﬁo relative entre of3)

robw{s)dspesaoanemuimseia gliminada sob todas as condigies de

carmagamernto, Coma regra priti yentre dois ok ¥ kas qualsguer,

dentrudamuitba,nﬁndeveemdaraﬁ,sm,qummmrg&

Toda zona critica da balanga deve estar adequadaments protegida conira vento,

chuva, ete.

MESmOo SEN CArga, B CoMTeil teve manter pler tato {s) rolete(s) de p

& com os irés do cada lado dols) mesnxys).

Dsroletes dazona orificad P i exnes fade miuimainferiora0,2mm T.1R.

conn of5) de pesagpem, ainda, balar io{s) dentro do 0,11 Newton metro.

jase

2 1 GERADOR DE PULSOB e S067500
L] 2z PONTE D€ PESAGEM i SoSTTE
TEM | AT DESCRGAD DESENHON.
emeho
0as, | daess | roriive @
PRC, | Alas | FéIPE
vy, | ot | nisive
LIFER. i f DESENHOBELAYOUT
EBCALA BALANGA INTEGRADDRA MODELO 0T
e
——
LETAN. Imsmu Ios. IA.F. Iuewu-nn. inﬁv
tapey | VIM-do#750R L4

o, ey

9270 BALANGA INTEGRADORA TOLEDO

PAINEL DE CONTROLE

s Unidade microprocessada com interface alfanumérica de facil
programacio & operacdo. Trés displays fomecerr todas as
indicacbes ao usudric de como O Sistema Transportador de
Correia & Balanca 9270 esti operando, e facilitam a entrada de
parametros via tedado.

s Calibragio dirigida, com instrugbes
indicados ao operador em displays,
Calibragdo.

s Opgio de captura automsatica do Zero Dindmico para cargas
inferiores & 2% ou 4% FS.

u Opggio de Nio Totalizagdo para cargas inferiores a 2% ou 4% FS.

= Protecdo totat das constantes de calibragao e totais acumulados
na falta de energia elétrica: sistema de back-up com autonomia
de 4.000 horas.

% Displays numéricos em LED com 5 digitos para indicagio da
vazdio instantanea e 6 digitos para indicacio pardial de material
totalizado. Display LCD alfanumérica de cristal Tiquido com 2
linhas de 16 caracteres para visualizaco do total de material
transportado (12 caracteres), velocidade instantanea da correia,
mensagens de alarme, menu de programacic/selecio e outros.

e valores calculados
em até 6 Regides de

B Saidas seriais parainterligacio a microcomputador ou impressora,
e ligacio em rede multiponto com outros equipamentos Toledo.
m Saidas digitais via relés de astado sofido para indicacdo de

"Alarme” e “Setpoint Afingido".

Saida analégica em tensfo ou corente correspondentes & vazao

instantanea.

e Saida pulsada para totalizacéo remota de material transportado.
m Com impressora acoplada, emissdo de relatérios com data, hora,
fatores de calibrago, totais acumulados, taxas de flxo, mensagens

de alamme e oufros.
TOLEDO - ALTA TECNOLOGIA EM PESAGEM
BALANGA INTEGRADORA 01
CAPACIDADE 500.00 t/h CORR IE ZERO: €,010
SEGCAD DE PESAGEM: .40 m FATOR TOMA 1: 0,123456789%01
OOMPR. CORRETA: 100 = FATOR PORA 2: 0.12345678301
VELOCIDADE NOMINAL: 166,00 m-min FATOR ZOMA 3: 0.12345578901
TEMPOQ TOTALIZAGAG: 24 h FATOR ZOMA 4: 0,1234567§901
ELIMINAR TOTALEZAGAD: S FATOR ZONA §: 0, 12345678901
AUTOZERO HABILITADO: S FATOR ZOMA 6: 0,12345678301
MENSAGEM DATA HORA. TOTAL TOTAL GERAL
INICIO OPERACAC | 28-11r%4 | 13:38 0,00t | 360, 240.30%
CARGA < 20% 20.11,95 | 13:50 | 170,251 | 360.410.55¢

AUTOZERO 20/11/94 | 13:
OPERAGRO NORMAL] 20/11,94 | 14:
CARGA > 100% 20/11/94 | 143
SOBRECARGA 20,1194 | 145
OPERAGAO 20/E1/94 | 14:

20/11/94 | 14:
20/11794 | 14

360.424.00¢
360.424.001
360.531.70t
368.395.95 ¢
360,666,101
360.740.30%

36 | 500,001 | 360.749,3C%

= Senha de acesso, religacio automatica, chave comutadora

liga/desliga, sinaleiro indicativo

de "Alarme” e outros.

I A TOLEDO SEMPRE ESTA ONDE VOCGE PRECISA I

TOLEDCO DD BRASH. INDURSTRIA D5 RALANGAS LTDA.

BELEM, PA oo roemrer TEL (1) 230-4001
FAX {91) 244-0871
BELOHORIZONTE, MG ... TEL. (31) 4121188

FAX, (31} 412-4306
CAMPINAS, SF............ TELEFAX {19) 225-6668
CAMPO GRANDE, MS TEL {67) 741-1300

FAX (67) 741-1302

GURITIBA, PR..............TELEFAX (41) 332-1010
FORTALEZA CE TEL {85)

FAX (85) 203-3183

GOWBNA, GO......rronnnr TELEFAX (62) 2020044

TELEFAX (92) 2353-0787

PORTOALEGRE, RS . TELEFAX (51) 337-2968
RECIFE, PE -oevvccrersrerearems TEL. (81) 3384774
FAX (B1) 339-6200
RIBEIRAQOPRETO, SP ... YEL (18} 626-4252
FAX {16) 626-5595

& J. DOSCAMPOS, SP..... TEL. (12) 321-8077
FAX (12) 321-8198
SADPALO,SP................ TEL (11) 61609117
FAX (11)8915-7766

RUA DO MANIFESTO, 1183 - TEL. (11)6160-&?00-0EP04209—QO‘| - SAD PAULO - 8P - BRASIL

site; wiww. toledobrasil.com.br

A Toledo segue uma poﬂﬁcadeaantﬁwodesemmMmenbdosseuspmdMOS

., resarvando-se o direito de a#emrespedﬁoapbeseequﬂ:amntosaqualquermamnm, sem prévio aviso,

declinandofoda a responsabilidade por eventuais esos ol omissiies que se verifiquem neste catdlogo. Assim, para informagdes exatas sobre qualquer modelo em particular, consultar
sis@toledobrasi

o Depertamenio de Marketing, e-mail: if com.br

TERWAN-O2a MALST

‘oassoo.d

ap sapepissEoal 8¢ Oy uedwooe
|Bu|Wwa} © anb BwIGs

ap 'odwisy OU SIBMYDS WP 8
aummpiay ap sagddo JBucipe
Sjuied JenBer op eusqe
snje)nbix v “sppuojodo seomd
ap GPEPBLIEA BUMN Sjuk POl
sope)||ih 198 wapad seapgyed
oI sEiveeg SwnG

wrad eompsqu) oo segdde
Huapipe sjwied cassed
guedyomg O "80JAUI) NO SIBIC]
‘sunhewpnewoly seaauam

CAITLL
ssclwizosn

apuesornodeld 'sapraY)
b sAu|ds|p JACWAI NQ FRUOD PR
&p apep|liqpai B 801950
Jenbep wobssed ap [eule O

aFavaaxad

'SBp|BS
Gl|C 8 SEpENUD 0}a '$BUCLY PE
s|piae sEHod 3NN NUSIRIIE

‘|gucjedo ‘ogdungygnu goe|d
By "siueiey Bp cpAEqULS
Jea|puj no "sjujodjes

Qwas S8} ‘SRR JEIOYUOW
wind ‘sepjes a9 3 wIossdwy)

mied w28 Bp[ES BWN IR 0O

SCUPEN | BINIPU B ULSD
opioonap opbeanlyuog

- OfY Asiprig uaiy WHFWOINE BIF} J2NIQ)S ‘0P
us_-hu_._ﬂﬁuneﬂ ._.__”m ap sagdun) ymnoexe ksl
saSuspognog Cidwexa jod ‘sepsan Jas wapod

SEPRAUS S ‘BEPEDHSIOISL
o= SuuBjey osn BIEd 'SEJOID
sepEs oyjenb @ swpasua onenb

INfaU| PEPURS CHUBWIIBIC) O

‘ogduayde

Ep SAPUPISIITTN B¥ Wah

OpI0OE BF FYUBUBIN| SOPRITWIOL

'GHUUES MO BPUBWER

s sapep Jaoeuio) waped smuotd

senp aY ‘¢g-Su o 'ZTrSH

‘slusiion ap dao 'ZEZ-SY

wa sjeajuods|p 'sjeucRpq

sepeidwios s{eums seyod senp
X3 "sEnna s seuoiad

s ‘spja|miEd @ S[uos sEps

@ sWpBIuo Inssed Jenber opol

§YQ)VS 3 SvavHiNg

jeuappe cuawedinbe
Joribjenh no [Bpedss

SIEMPS CHESHEOAU B OBN
JRUIULG) 98 wn W sedumug se
weno] ap wabesop op oummal
wn el o seduejeq FeidHMN

obso sisvEya
woaenfBeeonenty

op waBlesop Op WUSIRS WN
‘ajdwexs 10d Umeloid ex-opog
‘gpe) Rp oALGP S(BUSK sRyd a8
s8po} ® ossooe ojjwied JenBer
ap 8pal ¥ "$3JUCE SRIGAD 3P
SOPEP JAGa00s gpod o8 WUl

-Aedsip/op®ae; Bnssad ank
[RUILLLISY LN Bp 'SPl 1 $E5UE|Bq S8
swpa) & ossate 0 OPURY|qiesod
‘shujdeip/sopeaa) siyed
smnBer wabeead ap (BU|LLE)

'geBan sapepiun
se waa yBesony sied Jenfer wn
ap opepeyiedsip anbjerh 1esn

Jopeiado o aywied puspuEls
epal wa opsabjpaiy) v '|aued op
TRy ou osoped odxdse Rdnod

o8| ‘joutd Op DUSR TPRUSW
ofico wsaeyd Wwn smen weped
‘gdueieq wpeo mikd ‘wabaly|
2dwel o osad ap opSeapu(

® \niBRbser ogu enb seweys s o
opsudo op |euyed Wes no Woa
apeinBjuco 168 opod Jenber o

'@JURISXR WN 3P BUUGSJ BU hO
'OAOL BWRIS(S WIN WS [SARYUSD

o eduny opduiEisu] Bun waywied
euraiee o susbeuua

S6j50 $Upa] "80j-¥3i0) opusAe
'HURLLG] GU SOGED 90 JeBwWE
mied sjosjucdeip ops opdea)

ap 5/BYj0 CWSAW Gy "BISWI0q
ody} "S{PAJACLIS) OES SOLIDIXE
$0J0J0SUCD 30 Sapo) “e|nBual
oBse sa)dws wn woo jsued
w3 wobsyuow B opus)||oe)
'opEPNIG OjUjIIN[E 8D § BXBD

‘¥ YHEN
% eujed op opdotond ep tml o

o anb aywed wpeEOREs
Bi$3 '3PAJ WS 8{BUWIG}
SORIBNP JSUDHY BA BIIBUCS
1848 |SNY opsped piepusis soy
ap sed wp) solunoal b scpap

op oweweyipRdwos o pyuled
anb prepue)s apay ap suod Swn
wos EspG op Wea JenBer opo)

aqax

pupinasap |
o RPEAD|O BINRIS0WS) CWOD
SBWAIXD S|RIUAIGWE $IOS(PUND B
sepiASp sagliruoiep Jeyas wied
‘OPIPUN} QIU|WNR 9 GR|MISUSD
§ [ejuoy [pupd O "Btueis)s ou
o8N 2P oL 0 Jeuoprodoid
#A30[qo Jenfier op opdnASURY ¥

8Y2IS|d SNIDVLNVA

ORI B
- SEOUGH; W6 ordesdjA
i wotlisfes

‘pluejeg

Y jopRYSE WN NG JOPRIMSHY
wn woo esed owoo '[EAjEsod|
PARIGPSLOD 83 S5juR enb
sugSeojde We Jesed enfemuad
94 JKRI) O WaD "IPIpRHe
o walsyy op ogdeuguon
Joypetu B Jeuoadad B w0,
ap sopwjenfs Jo8 wapod anb
‘aiSgisapinul op @ sopidel-edns
‘sojrdgud wegBip souqy Jnpul
cuBsyos oN |eyBip wobegy
218d OASN{OXS BPEPIDOIOA

W& ap Jopeastoad Wn & ‘opajo)
lajuapy ep eashime mojouna)
op |epdiprosSoieur JoRIGAICD N
‘aduy) ausuBwale BBy eue
oa5en BN ID[oU| AuempiRy

ON "S/EAM}0S WS DWOD SIEMPIBY
1113 OUE] S3EOBACUL $ERI0AID
BUIQIWOD S{BARISL] SSIUNYWE
Bied OPSIT L GBI BP BABNONS
BSO|OUDa) WU § dSOXIL O

oA
9 og|a(BY - wdBAXNIL

‘opEIeW
ot [aajuadmp opjnd & odaad
Kol B & agusunopued ey

sjew B Buciniodod ‘eeoiBoeus
s¥{n|92 Wwag ‘opspod By

op sBAUB|BY GIE OPS|OL JAHIW
up sp2yBip abumD ap vEjmeR
apsap ‘Wwobesed ap oluswngsY}
oujne aanbiend anb op

sejue(eq ap sody siEw @ MRIUED
o9 mnber wolsed op Bujuwe) O

501D14aNaE
3 SYOILSHALOVEYD

ered dgaXedl

*ezE)
y|eqrr @ Jea0sas & sewspasd
wisy 9% opuenb Oy SEW
'SEpsAp 198 Wapod SBINJUIAY

"CLBUIBIOBG 10jeA Wn
wio o -wobused Sp owewnIsy|

10[BUE B GPUADBIAYD ‘sElBcouDa)

ot ed Ww
ouheseieu) epiden

SEPRALEAE @ SEACU |MIU|
mnfier wefesad op (wuLLs; O

Al oy ered Webeesd
0P OHUBWINISY] SILSUOND

wn ap sieAy{ssep sapUoUsy wn “"opwYnaey ‘ops(C), 8P
20 S0PO} WRKC 38 y BEPNTEID B WeD aRpRug
ap ogimbeju) eu renBer webesed 2 S8P|ARG WEID) SENRIISdE

2 {BupLI 0 Wod 'BBojauce)
ap BSuRpNLI no opfemde

8 WOD CIUR| CJUBUHISAI
ayuped enb ‘spoqe Binsynbue
90 BUWSIE|S LN wiodiody)
menbsr webzsad op eups;

0 'BSUBPNW SINSUCT WI SR
ogisucine Bp OPURW O QWO

‘S0AINDE) B SapEp OpUBYYUedUCD
‘opeiBajuy SjuswelE BUWEISIS WNU
OpRUKWED a8 Wgque; epod 3
“ajay sje wpjBups ¥ souswioped

B ¥RWE|q0Id 'FOPEOISISISY

sy ssdunjeq wesn

SRb sewasis op ogduanuew
o ogimiado 'dn-ree “opdaidsu
‘ogdngsuco 'oafaud o Jey)irey
wia [edjpuud oalRfo o 'render
watesad &b (B8NP [BULLG)

pod op oueuny p ON

"RINJUBAR

BUIn CQPU 8 {294 9438} BUN IS
BUSABD (BUISRPU| OBSEMIOINY
B Wa seSuRg Jmbajy

|elIsnpu| ogdewoiny eu
Jes} ep [1oe] @ osolepod
webesed op jeujwiia)

S08680014 8p oESewony eu Wabesad ep eopeq eibajuj

Eeqy einjoynbiy _

A C Reference Implementation of the LonTalk® Protocol
on the MC68360

Document Revision 1.7
Revision Date: July 15, 1998
Code Version 1.7

lldepr
ySTEM

Adept Systems Incorporated

www.adeptsystemsinc.com
Boca Raton, FL 33428-4861
+1-561-487-1244 (tel) +1-561-487-8930 (fax)

smithsm@ adeptsystemsinc.com adept@adeptsystemsinc.com

Section

TABLE OF CONTENTS

GectOn 1 OVETVIEW . « o v e e vrisararrasnannsmnsssnenseoennsurresmsssssrsensns 3
Section 1.1 Objectives of Reference Implementation.oovrnrneneanavrnenes 3
Section 1.2 Development TEAIM vvvvvnenrnreunnrreersror e rsrrreres 4
Section 1.3 Development TOOISo.vvevrerneenrnresearnrnerr e seersrrres 5
Section 1.4 Development HISEOIYo cvvvvrrvnrnnunnmnerrer s cersnenss 5
Section 1.5 Coding CONVERLIONS. .+ ..o v vvrenrrenrsrrennres s emrnssens 6

Section 2 Reference Implementation Software ATChItECtUre . ..o ovvvirvinnncnsannenes 11
Section 2.1 QUEES .« <. veevenerrenrnersararorenesnnnsessses st trtns 12
Section 2.2 SOFIWArE TIMIETS vcvnerenrnsveerrsnnsareensssesnrerrrsets 17
SECHON 23 PIAGIAS . . o« vvevvrrnrersoeressssosnssnsee e 17
Section 2.4 Memory ALOCAHONovvre e rennnrreaneee e 17
Section 2.5 Data SIHCIIFES. . o .o v vvenverrernrorserar o sty 17
SeCHOn 2EFEALUIBS & . oo v over v rrenr o renmsasanes syt 18

Section 3 MC68360 Implementationoovvevresrenrrrceenerersr st os 23
Section 3.1 Special Purpose MOGE vvvovvnrrrnrrrermnrmms et 23
Section 3.2 Direct Mode (Single Ended)o.onhvvnrneenrrismneren et 28

Section 4 Application Programmer’s Interface (APT) Description.oocovvevncenes 32
Section 4.1 OVEEVIEW . .. vvvnrenrorenrsrenssnsssssaseranmrrraror st 32
Section 4.2 COmMPIlAtioNvevnenaverr s 29
SECHON A3 PIAGIAS « « v v ovnsvnennsrnnserss s sen et tre 32
Section 4.4 INtialization. overvnresnrenersesa s 35
SECHON 4.5 RESEL. - v o v e e nearenanrcanm e s 32
Section 4.6 Application PIOZIAINvrveesnrrsrnremmrerrr e trss 35
Section 4.7 Explicit Messages and RESPONSes oovveennererernreessrrsssss 36
Section 4.8 Network Variableso.vvvnrernrerinerreenrerrmrenrssnss 40
Section 4.9 Network Variable Related FUNCtions . . . «...covvvenerenrrecmrsresss 42
Section 4.10 Network Variables and Address Table BBTes . . .o oo vnnrononenanses 39
Section 4.11 Message Tags ovvveeereaererronrerersosesmenrrrsssnsrres 39
Section 4.12 Miscellaneous FUNCHODSvnveinervinerrenrrrnrerenemsrsnrs 42
Section 4,13 Aas TAbles vvevrrvrmrnnrn i 40
Section 4.14 Software THMELS.ovvnevvrnnrne e 43

SECHON 5 RETEIENCES. . . v v vevcnnrer e reas s sss st 45

Section 1

1 OVERVIEW

This document describes the “C” language reference implementation of the LonTalk" protocol
on the MC68360. The objectives of the reference implementation are described along with the
approach taken in its development. The software architecture is described along with the relevant
details associated with implementation on a 68360. The API for the reference implementation is
also given.

1.1 Objectives of Reference Implementation

1.1.1 Support Open Protocol Specification— In the past the only available jmplementation of the
LonTalke® protocol was on a Neuron® processor. Recently however, Echelon® Corporation has
made the LonTalk protocol open for implementation on any processor. In an effort to facilitate
more rapid implementation and porting to other processors, Echelon®* Corporation has contracted
with Adept Systems to develop and document a working C language implementation on an
MC68360 as the basis for a open protocol specification. LonTalk is under consideration for adop-
tion as a standard protocol by several industrial control standards organizations. An essential
requirement for many of these standards bodies is a complete open specification of the protocol.
The existing LonTalk Protocol Specification document published by Echelon contains only
pseudo-code and is not a complete self-contained specification. One of the goals of reference
implementation is to expand and clarify the specification with the addition of working C code.
The reference implementation was developed from a functional description only of the LonTalk
protocol. No Neuron® C or Neuron assembly source code was provided for reference. Because of
this “clean” approach to the reference implementation development, omissions, confusing
descriptions, and errors in the original protocol specification became more apparent. As aresult a
list of clarifying questions and answers has been compiled for future reference.

1.1.2 Clarity and Understandability vs. Performance— Because the reference implementation’s
main purpose is to support an open protocol specification the emphasis was put on developing
clear, correct, and understandable code as opposed to optimally performing code relative to speed
and memory. The implementation minimizes dependence on the features of a specific develop-
ment environment or operating system services or additional external hardware. For example, the
reference implementation does not use a real time operating system (RTOS) but has built in its
own scheduling and timing facilities. In every case where possible ANSI C language code was
used instead of assembly. In fact, there is only one line of assembly code in the reference imple-
mentation. The behavior of the Neuron® processor is the “gold” standard for correct behavior of
the implementation.

1.1.3 Readability— A set of coding conventions has been adopted that emphasize readability and
documentation. The coding conventions help to maintain consistency throughout the code. The
conventions used were based on a combination of recommendations from well known C style
manuals and the development teams preferences.

1.1.4 Neuron® Memory Map Emulation— A virtual memory map of the Neuron Chip’s 64k mem-
ory space is maintained in a global structure. This approach makes it easier for the reference

*_ Echelon, LON, LONWORKS, LonBuilder, NodeBuilder, LonManager, LonTalk, LonUsers, Neuron, 3120,
3150, the Echelon logo, and the LonUsers logo are trademarks of Echelon Corporation registered in the
United States and other countries. LonLink, LonResponse, LonSupport, LonMaker, and LonPoint are
trademarks of Echelon Corporation.

Section 1.2

implementation to replicate Neuron® chip facilities for reading and writing memory to set config-
uration parameters in response to network management messages.

1.1.5 Data Flow Architecture— The software design developed by Adept is driven by the objec-
tives stated above. A data flow style architecture was selecied where the layers execute in round
robin fashion and pass information from layer to layer with global memory queues. The provides
a clearer separation of functionality in the layers than would a function call stack thereby enhanc-
ing understandability. The data flow approach also simplifies the implementation by avoiding
function blocking for timers to expire and/or complex function return handling. This approach
also makes it easier to port the implementation to other processors and/or a multi-process RTOS
where each layer could be its own process and communicates through either shared memory or
message queues.

1. 1.6 68360 Microcontroller— The microprocessor hardware selected by Echelon for the refer-
ence implementation is the Motorola MC68360 quad integrated communications controller. The
68360 has a 32 bit processor core and a multifunction communications processor module. The
communications processor includes many of the functions needed to implement the media access
control layer of the LonTalk protocol. Because of the 6836(’s built in support for several other
protocols it has potential as a generic platform for building gateways between LonTalk and other
protocols such as TCP/IP-Ethernet. It was hoped that no external hardware would be required to
implement the LonTalk protocol on the 68360. As of this writing, however, several hardware
design features of the 68360 are incompatible with the direct mode of the LonTalk protocol. This
document describes the finished implementation of special purpose mode only.

1.1.7 Future Protocol Ports— One other requirement is that Adept Systers be positioned in the
future to do ports of the LonTalk Protocol to other platforms or provide consulting services to oth-
ers doing ports.

1.2 Development Team

Dr. Sarnuel Smith and Dr. Stanley Dunn founded Adept Systems in 1994 to commercialize intelli-
gent, distributed control system technology and expertise developed at Florida Atlantic University
(FAU). The FAU Advanced Marine Sysiems Group, under the direction of Dr. Smith and Dr.
Dunn, has developed this technology and expertise over the past six years as the result of a multi-
million dollar research program to develop autonomous underwater vehicles (AUYV), sensor sys-
tems, and shipboard automation. A key factor in this successful research has been the creation of a
modular, low-cost reconfigurable AUV architecture that uses the LONWORKS® technology.

For the purpose of this proposed work, Adept has assembled a very capable development team.
The 3 primary members of this team are Samuel Smith, K. Ganesan, and Bryan Jacobson. In addi-
tion to the 3 principles members the development team will be supplemented by staff and gradu-
ate students at FAU who will be hired on a contract basis as needed.

Dr. Smith is the project leader. His primary technical participation is focused on the physical and
link layers with emphasis on the processor and electronic hardware specific implementation
issues. He has a Ph.D. in electrical and computer engineering and is experienced in embedded
controllers, and has over 4 years experience with LONWORKS® development and 10+ years experi-
ence in C programming. Dr. Ganesan’s primary technical participation will focus on the network,
transport, and session layers in addition to the overall architecture. He has a Ph.D. in computer
science and is experienced in networking, real time operating systems, and database design with

Section 1.3

12+ years of experience in C programming. Mr. Jacobson’s primary technical participation will
focus on the presentation and application layers and in code integration, testing, and validation.
He has an M.S. in Computer Science and is experienced in portability, portability testing and val-
idation, and compilerl5+ design with 15+ years experience in C language programming.

1.3 Development Tools

The major components to the development environment include an Arnewsh SBC360-1M devel-
opment board, Software Development System’s (SDS) CrossCode 68K C Compiler Suite and
SingleStep C BDM Debugger.

The SBC360 has a 25 MHz MC68EN360 processor with 1 Mbyte of DRAM, on-board ROM
monitor/debugger, Ethernet port, serial cable, BDM port, and documentation. The board requires
an external 5 Voit power supply. The SDS development environment runs in Windows95/NT and
includes a software simulator of the 68360. The SBC360 sells for $975. The SDS compiler does
not include a make facility. We use the Gnu Software Foundation make utility. It can be obtained
by fip from ftp.prep.at.mit.edu/make-3.75 tar.gz. AC compiler such as Visual C is needed to build
the make utility. A pre-compiled version is provided with the reference implementation. The SDS
compiler includes a limited text editor but will work with a more full featured editor such as
EMACS. The CrossCode C compiler is $2000 and the SingleStep BDM debugger is $2500. The
debugger comes with a cable to connect the BDM port to a PC parallel port. Contact information
is listed below.

Amewsh Inc.

P.O. Bex 270352

Fort Collins, CO 80527-0352

Tel: 970-223-1616 Fax: 970-223-9573

Software Development Systems

815 Commerce, Suite 250

Oak Brook, Illincis 60521

Tel: 800-448-7733 or 630-368-0400 Fax: 630-990-4641

1.4 Development History

Because the reference implementation was developed from a functional description of the proto-
col specification, the first few weeks of the project involved extensive review and clarification of
the protocol specification document through a combination of phone, email, and in person
exchanges between Echelon and Adept [Echelon 95]. A history of the Q&A exchanges has been
compiled. The initial software architecture was then designed. The coding tasks were divided into
three groups, the MAC layer, the middle layers 2 — 6, and layer 7 including the API. Coding pro-
ceeded in parallel on these 3 groups. Modifications and revisions to the architecture were made as
appropriate as understanding and the implementation matured. Before the MAC layer was fin-
ished it was desirable to test the completed parts of the middle layers. To do this the protocol stack
was modified to allow multiple protocol stacks to run on a single processor with a software virtual
channel connecting the stacks. This greatly sped the testing of the middle and upper layers of the
reference implementation.

Clarifications on 68360 functionality were provided by one of the Motorola field sales representa-

tives. At first study it appeared that there might be a few probiems in implementing the direct
mode on the 68360 without external hardware. As a result the initial development focused on

Section 1.5

implementing the special parpose mode while waiting for help and clarification from Motorola.
The goal was to implement a skeleton stack that supported at least one physical layer interface,
one protocol service type and one message type. The technical challenge for the special purpose
mode was to implement continuous transfers of frames between the 68360 and the transceiver. A
combination of functionality in the transceiver and 68360 make is impossible to impiement con-
tinuous transfers. Instead a non-continuous mode was implemented with the addition of some lim-
ited external hardware. Details are given below in Sec. 3. This allowed the upper layers to
communicate with Neuron Chips and facilitated further development and testing of the upper lay-
ers. Once the basic special purpose mode was working, development resumed on the direct mode.
Several discrepancies between the actual and documented function of the 68360 in transparent
mode became problematic with regards to implementing direct mode. Development resumed on
the channel access algorithm for special purpose mode which was subsequently completed.

1.5 Coding Conventions
The Coding conventions and examples are given below.

File Naming
File names are all in lower case.

The name reflects the purpose of its use.

For example, network.c or session.c.

To facilitate use with DOS systems, we will restrict our filename
length to 8 characters.

.o and . h files
Every .c file will have a corresponding .h file that represents
the public interface except main.c that contains main.

Every .h file has the following information:

1) constant definitions (#define)

2) macro definitions

3} type definitions

4) global variable declarations (i.e extern declarations)
5) functions prototypes

only prototypes for functions that are visible outside of the .C file
should be given the prototypes in the .h file.

All functions which are used locally inside the .c file should be
declared as static so that there is no conflict with same names
from other files.

Clobal variables used only in the .c file should be declared as static.
only those global variables that are declared in the .c file and vigible
outside should be given the externm declaration in the .h file.

Each function prototype should be preceded by a comment that gives
information about the proper usage of the function. The function
prototype should be the same as the function heading in the .c file.

Section 1.5

Every .h file should use #ifdef to avoid multiple inclusions.
#ifndef _NETWORK_BUFFERMGT
#define _NETWDRK_BUFFERMGT
<body of file>
#endif

Also, when header files are included in .c files, use < > instead of
double quotes. Use the compiler option -I to tell the compiler where
to find the header files. This gives flexibility in relocating header
files, 1f necessary.

Fil r i
Restrict all lines in the file to no more than 70 characters,
whenever possible.
Use tabs as you like. But for portability, replace tabs with
spaces when saving files.

Every file should have a header and footer. The header should identify
the following:

File Name:

References: Reference to protocol spec sections or other papers
that contributed to the code development.

Purpose: The purpose of this file.

Note: Any thing that does not fit anywhere above.

To Do: Things to be done. Delete this as soon as it ls done.

The footer should identify the end of the file.
/*********************sesenc_c**************/

Coding
Function Headings:

Every function should be preceded by decorated corment that gives
the following information:
/***
Function:

Returns:

Reference: Protocol Spec Reference

Purpose:

Comments: Any thing else you want to say.
w******w**w***********/

Constants:

All upper case letters. Use _ to separate words
#define MAX MSG BUFFER_SIZE 500
#define MAX_MSG COUNT 10

Parameterized Macros:
All upper case letters. Use _ to separate words. Use parenthesis for
protecting arguments.

#define MAX(a,b) (((a) > {b})?(a):{b))

Tvpes:
Capitalize each word in the type name.

-7

Section 1.5

MsgOut
Broadcastaddress

Variables:
gtart with lower case and every word should be capitalized.
¥No underscore is used.
maxSoFar
repeatCount
priority
For Pointer variables, use the suffix Ptr, if convenient.
For Global variables, use the suffic Gbl, if convenient.
addrThlGbl
msgThlPtr

Formal Parameters:

Use the following suffixes for all formal parameters of functions.
This requirement is not absolutely necessary, but makes the code
more readable. Follow this whenever possible.

In For Input Parameters passed by value

Inp For Input Parameters passed by reference
(for efficiency. Especially structures}

out For Output Parameters

InOut For Input/Cutput Parameters

Functions:

Capitalize every word including the first word.
SendMessage
ReceiveMessage
NetVarUpdate

Indentation stvle
wWe shall use 3 spaces for indentation of sub-statements for all statements.
Use space after keywords such as if, for, while, switch.
Use space before and after operands such as +, -, *, etc.
Functions
The indentation style for functions looks as follows:

<return-type> <fn-name>{ <parameters>)

{
<declarations>
<body>

1

<declarations>

1f more than one variable is declared in one declaration, put the
variables on separate lines to facilitate comments for each variable.
Tndent all variables as well as comments.

For example,

double miles, /* Distance in miles */
kms , /* Distance in kms B2/
feet; /* Distance in feet */

Section 1.5

<paramters>
Use suffixes Inp, In, OQut, InCut as described earlier.

if (<expr>)
{
<then-part>
}
else if (<expr>)
{
<else-part>

}
else

{
<else-part>

}

Note: Even if there is only one statement in then or else parts,
we shall use {} so that future changes are easier.
The same goes for locps teoo.

while
while (<expr>)
{
<declarations>

<body>

do while
do

{
<declarations>

<bodv>

}
while (<expr> };

for
for (<init> ; <condition> ; <update>)
{
<body>

switch
switch (<expr>)
{
case <const>:
«<gstatments>
/* Fall Through */
case <const>:

Section 1.5

<statements>
break;

default:
<gstatements>

}

default case, we shall always

Fven if there is nothing to do in
just have a comment

have the default case. If there is nothing,
that says so. /* do nothing */.

Other Files
Tn addition to the .c and .h file pairs, we may have additional
.h files that do not necessarily correspond to any .C file.
The purpose of these files is to provide system wide definitions

of types and constants.

End of Code Conventions

_io-

Section 2

2 REFERENCE IMPLEMENTATION SOFTWARE ARCHITECTURE

This section explains the architecture and data structures used for implementing the reference
implementation. The reader is assumed to have some reasonable understanding of the services
offered by various layers of the protocol stack. Working knowledge of Neuron® C programs is also
helpful.

The architecture for the reference implementation uses a data-flow model instead of a functionat
model due the nature of the interaction among the various layers. One of the reasons for this
choice is its simplicity. The data-flow model helps avoid unnecessary complexities involved with
blocking when function calls are used. The data flow model is also easier to partition and schedule
in a real time limited resource implementation. Each layer has three major functions: Reset, Send,
Receive. Reset is used on a node reset so that the layer can initialize and allocate its data struc-
tares. Send is used to process any outgoing packet(s) waiting for that layer. Receive is used to pro-
cess any incoming packet(s) waiting for that layer. Some layers also have an additional function
Init to perform initialization that is done only once during power-up.

The main round robin scheduler simply cycles through all the layers and the application program.
In each cycle, the scheduler calls the Send function of each of the layers then calls the Receive
function of each of the layers starting. The exact sequence is diagrammed in Fig. 2.1 . In each
cycle, it also calls the Application Program. It is up to the Application Program to use the time
slice in whatever way it wants to use it. For example, it can call one or more critical sections dur-
ing that time slice. It is important that the application program does not take up too much time or
else the layers will not have sufficient time to process the messages. The Send and Receive func-
tions of each layer should process minimal amount of work and return back to the scheduler. The
main scheduler calls the function NodeReset at start and whenever the node is reset. The function
NodeReset in turn calls the Reset functions of each of the layers. In addition, the main scheduler
also calls the function PHYTIO that is responsible for checking button press events and LED con-
trol. The timing critical parts of the Link layer including the MAC sub-layer such the packet fram-
ing, encoding, decoding, and channel access algorithms are interrupt driven.

The information flow between the layers through the respective buffers is shown in Fig. 2.2. The
reference implementation has been designed with minimal or no dependence on operating system
details or machine architecture, In fact, the implementation does not use any operating system.
The only code that depends on 68360 are the Interrupt Service Routines. Emphasis has been
placed on readability more than on efficiency, even though every effort has been made to make
code run efficiently. The code can be easily enhanced and ported to other systems provided the
physical layer can be rewritten for the new architecture. Another important feature of the refer-
ence implementation is that it supports multiple stacks for possible future extension. Currently the
multiple stacks run only in simulation mode in which there is no physical layer is involved. A stub
function transfers packets between all the stacks. In fact, the simulation mode was used early in
the development of the reference implementation to test the higher level code before the physical
layer was available. It is not difficult to modify the code to handle one physical layer, but with-
several stacks running simultaneously on the 68360.

i1-

—

- - oy -

— — —

Section 2.1

Protocol Stack
Execution Sequencing

Main Scheduler |
I Round Robin

-~
- ---..-._.__-‘--- .
——— Runsing

Application
DoApp() /

App.Layer)
APPReceive()

TransportLayer
TPReceive() /

Reset

Stack -""--' :
NodeReset() 5
: M SessionLayer
SNSend()
PhysicalLayer .
HYDisableSPMISR(

AppLayer
APPReset()

TransportLayer
TPSend()

Auth.Server
AuthSend(}

SessionLayer
SNReceive()

Auth.Server
AuthReceive()

S
NetworkLayer '\
NWReceive() /

LinkLayer
LKSend()
NetworkLayer /

NWReset() J} :
App.Layer LinkLayer
APPSend() / LKReceive() J
LinkLayer
>) / NetworkLayer

NWSend()

App.Layer
APPReset() /

\ .
(Tmnsport.l.ayer) '
TCSReset() /
" : NetworkLayer
(NWSend())

SessionLayer
TS AReset()

PhysicalLayer
PHYReset()

PhysicalLayer
PHYReset()

(Application)
AppReset()
mrp—— PhysicalLayer
" GHYE:;;&)I«:SPMISR(D <
Physicallayer -
PHYInitSPM()/ Interrupt Dnven)
— : nes

Application
AppReset() PhysicalLayer
\ - PHYSend() /

Physicallayer)
PHYIO(

Physicall ayer Routi

Figure 2.1 Main Scheduler Software Execution Sequencing

2.1 Queues

Queues are used as the primary data structure to store packets. There are generaily three kinds of
queues: Input, OQuiput, and OutputPriority. Input queucs are used to store incoming packets. Qut-
put queues are used to store non-priority packets. Finally, QutputPriority queues are used to store

—12-

e T - T aa

—

—-‘-\,—-\A,—\-—ﬁ‘-\.—\-—\—-‘,‘-\p\‘\—\

g, e

Section 2.1

Data Flow Diagram

User Application

NV Poll Requests

4 scs
"""" Message
. e Response

[¥VinindexQeeoe

NV Updates

Application Layer

[saowon

o

M

Physical Layer
MAC 1———1
ISR

Channel JASREIN7 SRR IR S SRR e T s

Figure 2.2 Data Flow Diagram

13-

Section 2.1

priority packets. In this section we explain the queues used by each of the layers and how they are
used.

2.1.1 Application Layer— The application layer uses Quiput and QuiputPriority queues (o Store
explicit messages sent by the application program. If these queues are full, then the application
can not queue up any more messages. Each item in the quene has two parts. The first part of the
item is a fixed structure called APPSendParam. This structure bas all the information regarding
what to do with the packet such as whether the packet needs authentication, what service is used
etc. These are the same information available in the MsgOut (or msg_out) siructure except the
data portion and the code. The second part of the queue item is the actual APDU which consists of
the code and the data. If the data is too large to fit, the message is discarded and the application is
notified with a completion event (i.e app layer calls the function MsgCompletes). Based on the
priority of the message, the packet is queued up in the appropriate queue. If the quene is full, the
message is discarded and the application is notified with MsgCompletes event.

The application layer uses an Input Queue for receiving incoming packets from the network as
well as to receive transaction completion indications from the transport, session, and network lay-
ers. If the packet received from this quene is an indication event, then it might be for a transaction
generated by the application layer itself (e.g. Network Variable Updates or Network Variable
Polis) or for a transaction generated by the application program. Transactions generated by the
application layer are given negative tags and transactions generated by the application program
are given non-negative tags. The indication packet is appropriately processed either to give Msg-
Completes event or NVUpdateCompletes event to the application. Some indications might be dis-
carded such as the ones for Service Pin messages.

The application layer and the session layer share a dedicated queue for responses. Responses from
the application program and the application itself are placed in this queue. This quene is used only
for responses. The session layer checks this queue for any outstanding responses every time the
§NSend is called. There is a good reason for having a dedicated quene for the response queue.
The alternative to not using the queue is to place the response along with messages in the applica-
tion layer’s output queune and then transfer to the session layer’s queue. This alternative will fail
due to the following reason. Consider a scenario in which a node is busy sending a request mes-
sage and thus the session layer is busy. Until the transaction is completed, the corresponding mes-
sage from the session layer’s output is not removed. If the response is behind this request message
(or even worse well back in the queue) the response will not get delivered in time. When the appli-
cation wants to send a response, it is directly placed in this queue by the application layer.

In addition to the above mentioned queues, the application layer uses a pair of queues to handle
petwork variable npdates and polls. The nvOutIndexqQ is used to store the indices of network vari-
abies (priority or non-priority) that are scheduled to be sent out. Each item in the queue has the
index of the network variable followed optionally by the value of the variable. If a network vari-
able is declared as a synchronous variable, then the value field follows the index. Otherwise, only
the index is stored. Every time APPSend function is called by the scheduler, it checks for network
variable updates in this queue and sends appropriate nv messages. The nvInIndexQ is used to store
the indices of network variables (priority or non-priority) polled by the application program. Once
again, the APPSend functions checks this quene and sends appropriate nv request MEssages.
These two pairs of queues are smalt compared to other queues. Due to the way the algorithm for
handling network variables and aliases works, the same queue is used for both priority as well as
non-priority variables (This includes any outgoing network variable updates or aliases). This is

14-

Section 2.1

equivalent to the way the Neuron chip implementation uses its application buffers. Thus, an out-
going priority message or netowork variable update could get sent down from the application
layer after a outgoing non-priority message or network variable update. Using distinct priority
and non-priority queues for the outgoing upper layers of the protocol stack would make the book
keeping required to process completion events for a network variable and its aliases that do not
share the same priority characteristic problematic. The effort needed to implement this is non-
trivial and was not attempted on this implementation. At the Physical layer however there are two
oufgoing queues one priority and one non-priority. Each time the channel access algorithm runs it
checks the priority queue first for pending packets. Priority messages ot NV updates that arrive at
the physical layer before a previous non-priority message ot NV update has successfully com-
pleted a channel access attenpt will get to access the network first.

Every time the scheduler calls the function APPSend, the application layer will try to send a prior-
ity message, a network variable update, a network variable poll, and a non-priority message.
APPReceive function will receive only one message at a time. If the incoming message cannot be
processed due to unavailability of resources, it might stay there until it can be processed.

2.1.2 Transport, Session, (and Authentication) Layers— The reference implementation does not
support the tx_by_addr flag in the read only data structure which facilitates a node to send several
outgoing transactions as long as they are to different destinations. Thus, there can be at most only
one priority and one pon-priority transaction that can be active at a given time. To avoid excessive
usage of queues, the reference implementation uses a single set of Output, QutputPriority, and
Input queues for the transport, session, and indeed the authentication layers. The authentication
component is used by both session and transport layers. It is not really a separate layer, but for the
sake of understanding of the queue structure, we can consider it to be a layer. The Qutput and Out-
putPriority queues are used to store outgoing APDUs meant for transport or session layer.

The transport layer uses the Quiput, and OutputPriority queues o Process Acknowledged or
Unacknowledged Repeated messages from the application layer. If the message at the head of the
queue is not one of these services, the transport layer ignores that queue and does nothing. The
priority queue is jooked at before the non-priority queue. The item in the queue is not removed
until the transaction is complete. The Input queue is used for receiving incoming TPDUs. The
transport layer will process the incoming TPDU to take appropriate action. Once again, it is possi-
ble that the incoming message cannot be processed due to unavailability of resources and hence it
might stay there until it can be processed.

The session layer is similar to the transport layer in the way the Input, Output and OutputPriority
queues are used. In addition, the session layer examines the Response quene for any outgoing
responses. The response is matched with the corresponding request in the receive record (dis-
cussed later) pool to determine the priority and the destination. If the corresponding network
queue does not have space for the response, the response is left undisturbed in the Response
queue. Currently, the reference implementation does not search for other responses in the same
queue for possible transmission (e.g. it does not use the same priority). By nature of the properties
of a queue, this operation will violate the way a queue should be used. A different data structure
may be more appropriate for this type of operation, but the reference implementation chose to
stick with only queues for simplicity.

The authentication layer does not use Qufput or OutputPriority Queues. However, the Input queue
is used to process incoming AuthPDUs (Challenges and Replies). The authentication layer is also

_15-

Section 2.1

responsible for searching through the receive records pool (discussed later) for messages that
require initiation of challenges (that were not sent earlier due to overflow of network queue
space). Authentication layer serves both session and transport layers. When a challenge is
received, the authentication layer determines the priority of the challenge message and appropri-
ately check the transmit record for a match. If a match is found, it sends the reply. When a reply is
received, the authentication layer searches through the receive records pool for a message for
which the challenge was issued. If there is no such record, then the reply is discarded. Otherwise,
the reply is matched and the authentication flag is set based on whether the match succeeded or
failed. As soon as the authentication is completed, the authentication layer will atternpt to deliver
the packet to the application layer using the same function that is used the transport or session lay-
ers. This is done as a courtesy and to avoid the delay in the delivery of the packet until the next
cycle. If a packet is flagged as a packet to be authenticated and the anthentication process fails
(either Reply does not arrive in time or it does not match), the packet is discarded.

2.1.3 Network Layer— The network layer uses Input, Output, and OutputPriority queues. The
Output and OutputPriority queues are nsed to send outgoing APDUs, or TPDUs, or SPDUS, or
AuthPDUs. The fixed portion of the queue item indicates whether to use alternate path, the back-
log value, destination address efc. The Input queue is used to receive incoming NPDUs. The net-
work layer will process the NPDU, strip the header portion, and detiver the enclosed PDU to the
appropriate layer by placing it in the Input queue of that layer. If the outgoing packet is an APDU,
then the network layer will also give success indication to the application layer. The reference
implementation requires the output queue size to be at least two or else the program will not run.

2.1.4 Link Layer— The Link Layer uses Ouiput and OQutputPriority quenes to process outgoing
LPDUs. These LPDUs are generated and placed in the queues by the aetwork layer. As usual,
each item has two parts, the first part giving the parameters for handling the LPDU and the second
part containing the LPDU itself. The Input queue for the link layer is used for receiving incoming
LPDUs and is different from all the previous gueues in the way it is handled. The Input queue is
filled by the Interrupt Service Routing(ISR) that handles the physical medium for receiving pack-
ets from the network. Since, semaphores are not used for mutual exclusion, there is a potential
problem in which the queue is updated (actually updating of the queueSize is the only problem)
by both ISR and the link layer. To avoid this problem, we use a queue in which the first part has a
flag and size of the LPDU and the second part is the actual LPDU. Link layer maintains a head
pointer into this quene and the ISR maintains 2 tail pointer into this queue. Whenever a new
LPDU is received, the ISR checks it the queue item to be used is free by testing the flag. If it is
free, it places the LPDU and sets the flag to indicate that the item contains a valid LPDU. Simi-
larty, the link layer checks the flag of the head of the queue to see if it contains valid item. If so, it
removes it and resets the flag. Due to corruption of packets when 68360 is asked to compute the
CRC, the link layer also computes the CRC for outgoing packets. For incoming packets, the CRC
computation is done by the mac layer as bytes are received one by one in the special purpose
mode. The reason for is due to the fact that mac layer needs to know whether the packet received
has valid CRC or not and the backlog value in the packet to implement the chanpel access algo-
rithm correctly. Priority slots are present in the channel only after receiving a packet with valid
CRC.

2.1.5 Physical Layer— The physical layer is a front end for the Interrupt Service Routine. The
physical layer nses only Output and OutputPriority Queues. There is no need for Input queue as
packets are directly retrieved from the network. The Quiput queues are flag based just like the

- 16

Section 2.2

Input queue for link layer. The Send function of the physical layer checks the data structures for
the ISR to see if it is ready for transmitting a new packet. If it is and a packet is available for trans-
mission, it copies the packet from the queve to the data structure for the ISR so that it is sent out.
The Receive function of the physical layer currently does nothing as the ISR itself copies the
received packet into the link layers's Inpul quene directly.

2.2 Software Timers

Software Timers are implemented with the help of a single hardware timer. For each software
timer, we keep track of its current value, the last update tim, and whether the timer expired or not.
When a function wants to check if a timer has expired, it simply calls MsTimesExpired. A timer is
considered expired only the first time the current value is found to have a value of 0. SetMsTimer
function can be used to initialize a timer to some initial value. There is also a function called
UpdateMsTimer to update a timer. Any number of software timers are supported. Reference
Implementation does not support repeating timers. They can be easily handled by the application
program by simply calling SetMsTimer again whenever MsTimerExpired returns TRUE.

2.3 Pragmas

Neuron® C has pragmas to support customization of various parameters affecting the protocol
stack. The reference implementation does not have a Neuron® C compiler. Regular C compiler is
used to compile the application along with the code for the protocol stack. Hence the file cus-
tom. h is used to define users configurable constants the node before reset. This file and custom.c
contains most of the information that is normally handled throngh pragma statements in a Neu-

ron® C program.
2.4 Memory Allocation

The allocation of buffers during node reset is done by calling the Reset function in each of the lay-
ers. A global array that is large enough is set aside to allocate buffers. A variable is initialized to
the base address of this array. Each layer takes what it needs from this array and update this vari-
able so that the next layer can allocate buffer using this new address. This mechanism is very sim-
ple and helps avoid the use of malloc. The constant MALLOC_SIZE in custom.h determines the
size of this array. If it is too small, the layers may not be able to get the storage they need and this
situation will result in main returning to start.s (an assembly file giving entry to main) which loops
on a single line. DONE BRA DONE; loop if main ever returns.

2.5 Data Structures

The various data stractures, including the queues, used for the reference implementation were
designed based primarily on the data structures discussed in the LONWORKS® Technology Device
Data book. The memory space is divided into two major sections: Stack Data, Neuron® chip Mem-
ory Map.

The Neuron® chip Map is used to mirror the memory layout of a Neuron® chip. EEPROM is part
of the Neuron® Map and starts at address 0xFO00 as in existing Neuron Chips. The data structures
other than EEPROM contained in the Neunron Memory Map include the stat structure, SNVT
structures, Proxy Data, errorLog, resetCanse, and network variable (config, alias, and fixed)
tables. The rest of Neuron Memory map is unused. EEPROM contains read only data structure,
configuration parameters, domain table, and address table. The reason for not placing network
variable tabies in EEPROM is to support large sumber of network variables. The network man-

—17-

Section 2.6

agement read-memory(or write-memory) command does the necessary mapping necessary to
fetch{or write) the data. Reading absolute location 0 is trapped and data value of 11 (base version
number) is replaced.

The Stack Data is used to represent the storage for all the queue data structures, hardware timer,
transmit records, receive records, tables used by the transaction control sub-layer for assigning
transaction ids, api variables such as msgln, msgOut, respln, respOut, miscellaneous book keep-
ing variables, and finally, variables representing the status of i/o buttons and LEDs.

To facilitate multiple stacks, these data structures are maintained one for each stack. Three global
pointers gp, eep, and nmp are used to point to the appropriate data structures for the individual
stack. These variables are set by the scheduler before starting the cycle for an individual stack.
The scheduler cycles through the functions for every stack.

The files custom.h and custom.c are used to initialize various data structures of the protocol stack.
The scheduler calls the function InitEEPROM to initialize various data structures inside
EEPROM based on values specified in these files. This is done only once during the boot process.
If the data structures are modified using network management messages, these new values will
persist unless the 68360 itself is reset. If the system has access to an external hard disk, the soft-
ware cap be easily modified to save the configuration and binding information in a file on exii and
load them after initialization but before the scheduler starts.

The readOnlyDataStruct in EEPROM is 41 bytes long and includes the readOnlyData?2 structure
described in the Technology Device Data Book. The configData and domainTable are as
described in the data book. The number of address table entries is determined by a constant
defined in cutom.h. One limitation of the Neuron chip is that the number of address table entries
has a maximum of 15. The reference implementation allows any number of address table entries,
though it reports a maximum of 15 entries to the management tools through read memory com-
mands relative to readOnlyDataStruct. The use of address tables are discussed in a later section.
The network variable config table, alias table, and fixed tables are as described in the data book.

Each stack has one priority and one non-priority transmit record. The number of receive records is
determined by a constant defined in custom.h and there is no restriction on the size of receive
record table. The transaction control sub-layer uses a table to keep track of transaction ids used for
various destinations to ensure that the same id is not used for the next transaction to that destina-
tion. The size of this table is determined by the constant TID TABLE_SIZE defined in the file
node.h.

2.6 Features
The reference implementation, not restricted by the limitations of a Neuron chip, has several

enhanced features that are not supported in the Neuron chip. This section describes all the features
supported by the reference implementation including the enhanced features.

2.6.1 Addressing Modes— Reference Implementation supports Unique Id, Subnet Node, Broad-
cast, and Maulticast addressing modes as is done in the neuron chip.

2.6.2 Broadcast Request— Normally a broadcast request transaction will succeed as soon as the
first response is delivered. a new addressing mode called BROADCAST_GROUP is used to sup-
port delivery of multiple responses to the application. In this mode, the application can specify
how many responses are required. The session layer will keep the transaction until the required

18-

Section 2.6

number of responses are delivered or transmission time expires. In any case, the transaction itself
will succeed if at least one response is received.

2.6.3 Group Size Compatibility Issue — In Neuron C application programs, the group size for
multicast messages where the node is not a member of the group should be set to actual group size
+ 1 for it to work. In Reference Implementation, this can be set to actual group size unless com-
patibility is needed in which case it can also be set gronp size + 1. This is basically a cleaner
approach as setting the group size to true group size + 1 is too artificial and is done so that trans-
port or session layer will work properly. The constant GROUP_SIZE_COMPATIBILITY conirois
this behavior.

2.6.4 Duplicate Detection— Reference Implementation uses a enhanced version of duplicate
detection algorithm. For assigning transaction ids, the transaction control sub-layer uses a table in
which we remember the last TID for each unique destination address. When a new transaction id
is requested for a destination, this table is searched for that destination. If a match is found, we
make sure that we don't assign the same id used for that destination. If the destination is not found,
we make a new entry in the table. We have an entry in the table for each subnet/node, group,
broadcast (subnet or domainwide) and unique id. When a table entry is assigned, we remember
the time stamp too. If the table does not have space for a new destination address, we get rid of
one which has remained in the table for more than 24 (modifiable in tcs.c) seconds. If no such
entry, then we fail to aliocate the new transaction id. The table size is configurable. This new algo-
rithm enables client nodes from falsely detecting duplicate transactions from this node. The table
is maintained after a software reset to enable the node to remember the transaction ids, This is
needed as the time taken to reset could be shorter than maximum receive timer value for all the
destinations. For power-up or external reset, we delay transport and session layers by a default
value of 2 seconds (configurable in custom.h) to enable the destinations nodes to get rid of all
pending receive records from this node.

Another enhancement to the duplicate detection that helps this node is in the way the receive
record is handled. Since memory is not a limitation for 68360, we store the entire APDU in the
receive records for better duplicate detection. When a new message is received and a matching
receive record is searched, we also use the APDU in the matching process to petform better dupli-
cate detection. When authentication is involved, this becomes more important. Neuron chips use a
check sum computed from the APDU to make sure that responses for authenticated duplicate
requests are sent only when the check sum matches. Matching the whole APDU is certainly better
than just using the checksum.

2.6.5 Services— LonTalk Protocol Provides four basic types of message services: Unacknowl-
edge, Unacknowledged Repeated, Acknowledged, and Request/Response. The reference imple-
mentation provides all these message services with a a few minor enhancements.

2.6.6 Null Response— The reference implementation supports a new response mechanism known
as null-response. The purpose of the pull-response is for the application to indicate to the session
layer that it does not want to respond to a request it received earlier. One of the reason an applica-
tion may not want to respond is that the request needs authentication and the authentication pro-
cess failed. Null-responses are not sent over the network. A null-response is a cleaner and better
solution than not responding at all. The application Jooks cleaner and friendly! There is however
no harm if the application does not respond as the session layer will get rid of the receive record
when the timer expires anyway.

~ 19~

Section 2.6

2.6.7 Context Dependent Response— In several applications it may be important to make sure that
the responses are matched with the correct request to ensure that the response goes to the right
destination. The Reference Implementation supports this by assigning a unique request id to each
request so that it can be used by the app pgm when sending responses for proper match. Thus
there is no need for locking up receive records corresponding to requests without a response yet
when the timer expites. As soon as receive timer expires, the corresponding record is released as
Jater responses can be identified as stale with the request id.

2.6.8 Less Traffic to Application Program— In the Neuron Chip implementation, duplicate
requests for idempotent responses (> 1 byte) are sent to the application program to respond again.
In the Reference Implementation, all responses are saved by the session layer so that duplicate
requests are directly responded to by the session layer. If this is undesirable for an application, it is
easy to add a field in respln to indicate this so that session layer can pass duplicate requests back
to the application program for a fresh response.

2.6.9 Routing— The reference implementation does not support the functionality of a router node.

2.6.10 Explicit Messages— The reference implementation supports explicit messages with both
explicit as well as implicit addressing. For implicit addressing, the application declares bindable
tags and uses them as tags for implicit addressing when forming an explicit message. These tags
should be bound to msg_in tag of another node for it to have a valid address table eniry. For
explicit addressing, the application can use non-bindable tags. When using bindable tags, the
application can use explicit addressing to override implicit addressing. In other words, if addr
field in gp->msgOut (or msg_out) is neither unbound nor tarnaround, then it will override any
implicit addressing for this tag. gp->msgOut (or msg_out) is re-initialized after each message and
hence the address field shouid be unbound by default. Explicit messages cannot use turnaround
addressing.

2 6.11 Address Table Entries— The reference implementation supports more than 15 address
table entries, The constant NUM_ADDR_TBL_ENTRIES in custom.h can be used to define the
size of the table. The field addressCt in readOnlyDataStruct has only 4 bits and hence a maxi-
mum of only 15 can be reported in this field. Network management tools may only support 15
address table entries. Another problem with using more than 15 address table entries is the limita-
tion of 4 bits for address table index in network variable configuration structure. Thus, network
variables cannot use more than 15 address table entries unless these structures are modified some-
how o be backward compatible and at the same time allowing new management tools to handle
them properly. The only use of these additional entries at present is with implicit addressing for
explicit messages. Again, there is a minor problem with this. Normally, bindable tags are used for
implicit addressing. Tags in reference implementation are nothing but a 2 byte integer. Non-bind-
able tags start with the number NUM_ADDR_TBL_ENTRIES. Bindable tags are in the range
0.NUM_ADDR_TBL_ENTRIES -1. The one byte field mtagCount in SNVTStruct keeps track
number of bindable tags in a node and this field is used by the management tools, This introduces
an upper bound of 255 for the number of bindable tags. Thus, the true limit on number of bindable
tags is min(NUM_ADDR_TBL._ENTRIES -1, 255). Since bindable tags are normally associated
with address table entries by the management tools, they cannot handle more than 15 entries.
Thus, the only way to use these extra entries is to somehow manage them internally. As long as
the application program uses bindable tags, the reference implementation will use implicit
addressing. The options are either to fool the management tool into thinking that we have less

_20-

Section 2.6

bindable tags than we actually have (by chan ing mtagCount) or to introduce a new type of tag for
internal use explicitly for this purpose. The fanction NewMsgTag can be modified to handle this.
Yet another way is to use a tag (in the range 16.NUM_ADDR_TBL_ENTRIES-1) in the applica-
tion program without actuatly declaring it using NewMsgTag. It is not the purpose of the Refer-
ence Implementation to support more than 15 address table entries.

2.6.12 Network Variables or Implicit Messages — The reference implementation supports net-
work variables and all the related features as found in Neuron C programming manuals. Since the
reference implementation does not use a Neuron C like compiler, the application program
depends on function calls for registering and updating network variables. Synchronous variables,
polling of variables, arrays are also supported. The details are explained in the API section.

2.6.13 Neuron C Compatibility— Since the reference implementation uses modern naming con-
ventions, the data siructure names and field names are different from the ones found in Neuron C.
However compatible structures and functions have been defined to minimize the porting of Neu-
ron C code to run on the reference implementation.To enable the use of such variables, the con-
stant NEURON_STRUCTURES_NEEDED is defined in lontalk.h. If you do not need this
feature, you can comment this constant. If this constant is defined, variables such as msg_in,
msg_out etc. are defined and used by the reference implementation. When functions such as
msg_send() are called, these structures are copied into corresponding structures in reference
implementation (gp->msgOut, gp->respOut etc.) before actual processing. Similarly, when func-
tions such as resp_receive() are called, the reference implementation copies the native structures
(such as gp->respIn) to Neuron C like structures (such as resp_in). Thus, there is some overhead
involved in using Neuron C like structures.

3 6.14 When Statements — Neuron C program is based on events. The when clauses specify
events that are monitored by the scheduler and executed when the event happens. In reference
implementation, the scheduler is much simpler. The scheduler simpty calls the application pro-
gram function DoApp(). In order to capture events such as completion of a message, the applica-
tion program should provide some call back functions. Thus, the application defines several
functions corresponding to the various events such as NVUpdateOccurs and the application layer
will call these functions to communicate with the application. The application program itself can
be written using a sequence of if statements to mirror the sequence of when statements. There is
no concept of priority when clauses. It is up to the application program (0 manage the order of
execution of these if statements. For instance, the application program can use a state variable to
determine what to do when the application program is called by the scheduler next time. Timer
events are handled with a call to MsTimerExpired() function to check for timer expiry.

2 6.15 Extended Statistics— The reference implementation collects some additional statistics that
are not available in a Neuron Chip based node. To allow room for expansion in the list of original
list of statistics collected, the reference implementation defines space for 11 new statistics. This
expansion region is followed by some extended statistics. Read/Write memory command with stat
relative can be used to retrieve/update these values.

2.6.16 Explicit Network Management Messages— If the application program generates an explicit
request message that is a network management or diagnostic command, the corresponding
response is forwarded to application program (o handle the response. This is unlike Neuron C
where the responses to network management/diagnostic commands are handled by the application

_21-

Section 2.6

layer itself. The application program can call already existing functions to handle such messages,
if needed.

2.6.17 Handling of Address Table Entries— When explicit messages are sent, any implicit
address table entries (throngh the use of bindable tags) are copied at the time msg_send(} fanction
is called. Thus, while the message is waiting in the queue, if the node is goes unconfigured,
address table entry is changed, and becomes configured ag in, the new entry will not affect the
message already in the queue. However, for network variables, the reference implementation only
schedules these variables for generating NVUpdate messages. This message generation is sup-
pressed when the node is unconfigured. If the address table entries are changed in the mean time,
these new address table entries will be used for the network variables in the nv queue when the
node goes configured. Again, the new entries do not affect those messages already generated
using old entries (which will be in transport or session or network layer queue). To get a predict-
able behavior, it is recommended that the application is off-line for a while to enable all pending
messages to be flashed out before bringing it back on-line.

2 6.18 Flex Domain— The reference implementation supports any number of flex domain mes-
sages outstanding at any point of time. For example, it can receive several request messages in flex
domain and the responses for these messages will use the flex domain in the corresponding
request.

~22

Section 3

3 MC68360 IMPLEMENTATION

This section describes the interface to the physical layer. These functions are primarily the inter-
rupt driven portions of the MAC layer and its interface to the Link layer. The following section
describes the overall software design.

The Neuron Chip communication port supports 3 different modes of operation: single ended
mode, differential ended mode, and special purpose mode. The single and differential ended
modes both involve direct access to the channel through analog circuitry in a transceiver. The spe-
cial purpose mode requires a smart transceiver that executes a digital serial handshake protocol
with the Neuron and the nature of the signal on the channel is hidden from the Neuron Chip’s
communications port. The difference between the single ended and differential ended modes is
that the Neuron Chip’s communications port has an additional analog stage built in for the differ-
ential mode that includes driver circuitry. The 68360 does not have any similar analog circuitry.
To implement the differential mode will require external circuitry to replicate the Neuron Chip’s
additional analog stage. Echelon makes an interface pod for the PCC-10 card that can provide this
capability. Otherwise the single ended and differential ended implementations are identical and
will henceforth be referred to together as direct mode.

3.1 Special Purpose Mode

In special purpose mode the 68360 and the smart transceiver simultaneously and continuously
exchange a sequence of 16 bit words over a synchronous serial interface {Echelon 91]. In each
word the first § bits include status and control information and the second 8 bits contain data if
any. The interface on the 68360 (transceiver) consists of a transmit (receive) pin, receive (trans-
mit) pin, clockout (clockin) pin, and frame clockout (frame clockin) pin. Each 16 bit word is
delimited by the framing clock signal. The SPI port on the 68360 provides most of the needed
functionality for this interface. Specifically the SPI port provides for simultaneous clocked double
buffered send and receive with the 68360 acting as master. Two significant differences in the Neu-
ron Chip operation from standard SPI interfaces create complications in the implementation.

3.1.1 Continuous Transfer— One is the requirement for continuous transfer. Normally SPI pro-
cessing wouid have the Master initiate a transfer by enabling its output clock. Once the correct
numsber of bits have been transferred, the Master stops the output clock thereby stopping transfer.
The Master can then process the transferred data and prepate for another transfer. With continuous
transfer the Master never stops sending and receiving. This means storage must always exist for
new receptions and valid data is always ready and waiting for transmit. Processing of data must
occur during subsequent transfers.

The 68360 provides a facility for direct memory access from the SPI port through the SDMA con-
troller. The SDMA controller provides circular quenes into memory. Local transmit and receive
registers in the SPI allow continuous transfers to/from memory to the SPI port. Continuous trans-
fer can be achieved by appropriate use of the circular queues. Each queue must have at least 3
buffers. Each buffer in the queue will be 16 bits wide.

In the original approach a design was developed that attempted to support continuous mode. The
configuration is as follows: The transmit buffer quene on the 360 is initialized with a default trans-
mit status byte. The receive quene shoutd be initialized to be ready for reception. The circular
buffer quenes should be initialized so that the SPI port will instantly move on to the next buffer as
soon as it has transmitted (received) a buffer (continuous mode). Upon completion of a buffer the

23—

Section 3.1

SPI will generate an interrupt and simultaneously start onto the next pair of buffers (one receive
and one transmit). The interrupt service rou :ne must read the stams and data of the last received
buffer and then write an appropriate status and data for the transmit buffer following the one cur-
rently being transmitted. Where appropriate more than one transmit buffer can be written such as
in the case of the transmit of a packet. But each word transfer must be checked to see if the trans-
mission must be aborted due to a collision. For data reception the interrupt service routine has to
copy out and splice together the data bytes of each transfer to make a packet. For data transmis-
sion the interrupt service routing has to segment the packet and fill in status bytes.the interrupt
service routine has to execute in much less than the time to transfer one word (16 bit times).

3.1.2 Continuous Transfer Problems— Continnous transfers do not work however due to a combi-
nation of features in the 68360 and thee state machine logic in the PL-20 powerline transceiver
used to test special purpose mode. The xcvr requires that when it sets the CTS bit in one frame, a
valid data byte must be sent in the very next frame. In the continuous transfer approach, a predic-
tion was made as to which frame a valid data byte would be required. This frame was written to a
buffer prior to receiving the frame with the CTS. The assumption being that if the xcvr did not
send a CTS in the preceding frame that the xcvr would ignore the Data_Valid bit. Instead the xcvr
Tocks up if it gets a Data_Valid in any frame not following a CTS. This makes continous transfer
of frames impossible.

A second approach was tried in which only 8 bytes were transferred at a time. Altenating between
status and data. In this approach, the status byte of one frame could be processed and the status
byte of the next frame written while the data byte of the first frame was being transferred. How-
ever the SPI FIFO is 2 bytes long and is double buffered. The SPI pre-feiches the next word
before it finishes sending the current word. This makes it impossible to write the next status byte
while reading in the previous data byte.

A third approach was tried by using one of the SCC ports. The FIFO arrangement of the SCC
ports, however, results in a similar problem.

3.1.3 Non-Continuous Transfer Mode— Finally it was determined that the powerline transceiver
could stiil communicate with the 68360 even if the transfers are non-continuous. In non-continous
mode the bit clock and frame clock pause at the end of each frame. This stops transfers. The last
frame transferred is then processed by the 68360. The next frame is then loaded and the clocks
restarted. Only one buffer is required thus obviating the circular buffer queues. This is a much
simpler approach and is easier to implement. In fact any microprocessor with an SPI port of suffi-
cient speed could implement non-continous special purpose mode. However it is a variance from
the official Special Purpose Mode specification. It is recommended that the Special Purpose Mode
specification be changed to allow non-continuous transfers. The major difficutty with non-contin-
uous mode is it introduces complications in the channel access algorithm timing.

The non-continuous mode configuration is diagrammed in Fig. 3.1 and the timing is shown in
Fig. 3.2. The pin mapping for SPM is given in Tbl. 3.1:

The LonTaik protocol specifies certain channel characteristics and time petiods such as Betal and
Beta2 that are important to the channel access algorithm. The non-continuous nature of the refer-
ence implementation’s special purpose mode requires some modification (o make it compatible
with Neuron Chips operating on the same channel. In special purpose mode any actions taken by
the host processor with respect to the transceiver happen on a frame by frame basis. Consequently
any timing of say starting packet transmission or reception is rounded to the nearest frame. There-

_24-

Section 3.1

TABLE 3.1 PN MAPPING

68360 Neuron Equivalent
SPICIk CP2 (Bit Clock Output)
SPIMOSI CP1 (TX Input)
SPIMISO CPO (RX Input)
TCLK (CLK2) (connected to CP2)
TXD2 CP4 (Frame Clock Output}

fore the effective frame rate is the critical parameter and not the bit rate at which data is trans-
ferred. In non-continuous mode the effective frame period is equal to the actual time to shift out
16 bits plus the time it takes for the interrupt service routine to process the frame. For a given
desired frame period, the bit rate must be sped rate up so that the effective frame period is the
same or less than the desired frame period. The basic Idea is to make the period between frame
syncs in non continous mode equivalent to the period between frame syncs in continous mode.
For example the slowest allowed bit rate according to the protocol specification for SPM is 156.25
kbps. This has a frame rate of 156.25/16 = 9.7656 kfps. To match this with non-continuous trans-
fer means that the SPI bit clock must be sped up when transferring frames so that the total time
period (= 16 bit clocks + ISR processing time) is the same or less than 16 bit clocks in continuous
mode. For a bit rate of 156.25 Khz the frame period is 16 * 6.4 usec = 102.4 usec. Suppose the
worst case time for ISR is 58 micro seconds then the time left over for the actual frame is 102.4 -
58 = 444 usec. This corresponds to a bit rate of 16 * 1/(44.4 usec) = 360.36 kbps. The closest bit
rate greater than this that the 360 supports is 390.625 kbps. The effective frame period becomes
58 usec + (16 * (1/390.625 kbps)) = 58 usec + 40.96 usec = 98kbps and the effective frame rate is
6.12 kfps. Unless the ISR time can be shortened to less than half its current duration there is no
way to run the bit rate fast enough to make it to the next LONWORKS® compatible step which is
the 312.5 Kbps rate.

3.1.4 Frame Clock— The other major implementation detail is to provide the framing clock. The
framing clock comes on at the start of a data transfer and turns off one bit time later. It is not sim-
ply a divide by 16 of the SPI clock. In other processors that support pulse width modulation it is
possible to have one timer change the state of another timer. The 360 does not provide any direct
implementation of such an approach. The most straightforward way to generate the framing clock
is to use one of the SCC ports on the 360. In this case the SCC is configured in transparent NRZ
mode without preamble or CRC. It continuously transmits 1000000000000000 (1 and fifteen ('s)
synchronized to the output clock of the SPL The SPM XCVR interface provides that the Rx input
to the host from the XCVR is valid on falling edge of the bitclock and requires that the Tx output
from host to the XCVR is valid on next positive edge of the bitclock. The 68360 SPL, however,
both provides and requires that inputs and outputs are valid on the same edge of the bitclock. The
particular edge (pos or neg) is configurabie. This mismatch requires that the SPI output (Tx) be
delayed one half clock period. This requires some external hardware consisting of a D flip flop
triggered on the rising edge of ~bitclock to delay the Tx output.

3.1.5 SPM Interrupt Service Routine— An interrupt service routine was used to implement the
SPM Mac sublayer functions. This was the most effective approach given the timing critical
nature of the SPI to power line transceiver interface. The ISR served 3 main funtions:

25

Section 3.1

— : uod
1050y~ Uld Ol 8s0ding [B10ueex l|AiRiEd
nding XD ey XL {pusSAHd
-— _I_ 208
_ _ anent)
z._o‘_lﬂ ywsueal
, §— 18£8
. g ‘||.I_ el sNBLS nag1| N
ol I Jong sweld Jwsuell D
HAOX yoo|pua~ fwsuei)]
Ayond
an.y 1Ae]
Y W
wowon| | UIANDAAMAARSRRAALY s :
o ‘
nding %2010 18 XIS
enanp
> I|I.|'_ Bra snies 1 aajpoey
ndu| Xy OSINIES W8S Sepng ouiesg eAjedBH | soke
i [sun
Madt
1efe ju

uoneusmeduw] 09£89 Spo dsoding feradg

-26

€

€

Non-continuous Special Purpose Mode Hardware Configuration
b) SPM transceiver handshake state machine

Figure 3.1
a) SPI transfers

¢) Channel access algorithm state mac

Section 3.1

aulll uny HSI

- —
stigg — e
m.__ hul — RRBER — — Jﬂ_u.w__w.,
_ mh_ m_rh“ -) =3 W_aw__._.w.‘m imJ,, ___._ o 4 N_ m_,_ q mﬂ Ml.. XH.. ‘ m ,_ A
™ ._ 00} OBl -
1N UL sk szeoee ooiowa ||l
> <
s1l 96°'2
<+ g6 0¥ bl
- —
sdgy 09€ = ©1ei 1iq BANody e s1196°86
SJ9jsuel] SNONUIUOD-UON 10} Buii] 09€89 - NAS

Special Purpose Mode Non-continuous Transfer Timing

Figure 3.2

=07

Section 3.2

The ISR would run at the end of each completed SPM frame transfer. The order of execution of
each of the ISR functions is as follows: First the received SPI/SPM frame is read in, second the
channel access algorithm state machine is executed including the cycle timer code, third the SPM
handshake state machine is executed, and finally the ransmit SPI/SPM frame is written and and
SPI transfer is initiated. The order of execution is important as the interaction between the chan-
nel access algorithm state machine and SPM state mac ine assumes that the channel access algo-
rithm will go first. A diagram of the channel access algorithm state machine is shown in Fig. 3.3.
The SPM state machine is shown in Fig. 3.4.

3.2 Direct Mode (Single Ended)

The Neuron chip uses Bi-Phase space encoding with variable length bit sync preambles (all 1’s)
and a singie bit (0) for a byte sync preamble. Bi-Phase space encoding uses one transition at the
beginning of each bit time for a 1 and a second transition at the midpoint of a bit time for a 0.
Each packet ends with a 16 bit CRC and > 2 bit times of line code violation (no transitions).

The 68360 has four SCC poris. Each port can be configured to automa jcally support a variety of
protocols although LONTalk is not one of them. However, most of the functionality needed for
the LONTalk protocol is provided by the SCC ports. An SCC port inciudes a digital phase locked
loop (DPLL) that can be used for synchronizing clocks. The SCC port can also provide carrier
sense, encoding and decoding functions and preamble pattern matching. The SCC also provides
SDMA access to memory through circular queues.

The attempted 68360 implementation is as follows: The SCC is configured to operaie in transpar-
ent mode with the DPLL enabled to provide encoding and decoding of FMO format (same as Bi-
phase space encoding). An internal baud rate generator will be used for the nominal bit time
clock. The DPLL will use that for transmission and as the basis for generating the receive syn-
chronization clock. The DPLL can be configured to have a base clock rate of 16 times the sync
clock at 1.25 Mbps and maximum 32 times for slower channels.

For reception, the preamble sync patiern is set to 1110. The SCC will start dumping bits to a
receive buffer as soon as it detects that pattern on the channel. Since LONTalk preambles consist
of a variable (depending on the channel type) number of 1’s followed by a zero, the SCC will wait
until the 0. Each receive buffer should be as large as the largest anticipated packet.

The DPLL can be configured so that a idle is indicated after 1.5 bit times of line code violation.
An idle channet is indicated by the CS bit in the SCCS register. A change in CS sets the DCC bit
in the SCCE and can cause an interrupt. The SCC does not have a direct way of terminating a
packet by noticing line code violations. Consequently it could continze dumping bits into the
receive buffer during an idte. The interrupt service routine must manually terminate packet recep-
tion and then remove any spurious bits on the end of the packet due to the latency between when
the packet really ended and the service routine executed. The latency for entering and interrupt
service routine on the 68360 is on the order of 30 clock cycles. This is greater than 1 bit time for
the 1.25 Mbps channel (25MHz clock). This makes 1.25 Mbps second operation problematic
without external hardware. The interrupt service routine may not be able to resolve the true end of
the packet.

The Idle interrupt service rontine must also start checking and timing the length of the idle in the
case that an outgoing packet is waiting. If the required idle time is reached then it can mannally
initiate transmission of a packet. It must also copy to a transmit buffer any waiting PPDU’s, A
multipurpose O pin on one of the 68360 ports can be configured for the collision detect input.

_28-

Figure 3.3

Section 3.2

Special Purpose Mode Channel Access Algoritbm State Machine

——
8< ! BUSY % Stute
Transit
Channel now idle R D s ey
Start idle timer [‘_ STATE
Clear alt puth bit flag = =
™1 Ciear rxValidCRC flag |
Set Betal durmtion | Action]
Set Priorityldle duration et A WS

Channel still busy
Set as post receive or post
transsmit J

0T e

== M
Léﬁ BETALIDLE 1 o PRIORTTY_ WAL TX)

Channel now bisy Channel now busy

Franspit packet ready and ait Transmit timer expired
path bit not yet written Acuess approved
Write alv path bix

Beta | time expired and priority Dhefoult
access conditions satisfied t én_'l
Start transmit timer

Beta I time expired and priority AR ;

access conditions not satisfied [START_TX w
Channel now busy

Access denied

Defantt
. v

Fransmit packet not ready
Access denied [T

|
T

Default

[
— PRIORITY_IDLE Always and bate timer expired
Channel now busy Restart base timer
Decrement Backlog
Transmit packet ready and alt —_— L J
{path bit iotyet wrtten (RANDOMLWAFLTX || ~ %~
‘Wiite alt path bit Channel now busy]
Priority idle time r:‘:é:r'rcd‘ ond
transmit packet ready Transmit timer expired
Start wansmit timer é b
Start base timer Access approved
Compute Random Access Slot
Priority idle time expired and Defautt
tranonit packer not ready Always and base timer expired
Restart base timer
Default 4; Decrement Backlog
k. i v,
~ - (" From SPM Handshake)
i =
B RANDOM_IDLE ALWAYS) Vaalid CRC receive packei
——| Channagl now busy State is RANDOM_IDLE and Set cycla timer restart
cycle timer resiart Set valid CRC fecanye
Transmit packet ready and alt Restart cycle timer Update bucklog with deltaBL
path bit ot yet written B 7
Writc alt path bit State is RANDOM_IDLE and Succesyul transmit packet
o —] cycle timer expi e Set cyele timer restart
Transmit packet ready J"R o cvcte t Updute backlog with deltaBL.
Start transmnit timer estaiteyciofimee
Start base timer Pecrement bucklog Rl D
Compute Random Access Slof Default Cotlision on fransmit
Default Shift vycle timer forward Increment brucklog
!); . J . —y

SPM Channel Access Algorithm State Machine. The bottom two uncomnected blocks
labled ALWAYS and From SPM Handshade reprensent code that 1s executed later in the
ISR that is essential to the channel access algorithm but is not formally part of the state
machine code section.

~-20..

P . . s

Section 3.2

MAC Sub-layer to Special Purpose Mode XCVR State Machine
————
TDLE
rxklag

Tnit CRC & xx byte counter
satus =0 dam=0

Increment neset counter
saus=0 dam =0
writeAlPahilir &&
faliPahBitWritien
Write alt path bit L.
Set aliPathBitWrines

watus = 1
s -+ config w ah path hit
tpr && accexsApproved

Reset ™ byte counter -
satus = 040 dama =0 '|

erw && 0 <trac-7)
status = cra data = crl

srn_!&{f)c sra <= 7) l
stagrs = D0001sm dum - 0

defauit
tatus =G dan - O
4 849 f%ﬂ\
e REQTE)
RECEIVE f RQTX
Trklag i rrkiag
Process end of packet L 1N | Tnit CRC & x byte counter
stanus= 0 daa =0 status =0 dam =10
I clrikenllog && seiTxklag & &
laavalid
Process new byt mmw i
status = 0 dam = 0 s datn = iphafic]
L) Increment i
defosdt]
‘Wait for next hyte - clrTxReqilag && lserfxkiag
stmns - Gchatn = 0] status= 0 dato = 0
= —t default
L sans s O daa -
e wWRIE Y T L
rxfitag P
Tait CRC & rx bytc counter [—— TRANSMIT
staris=0 dam O il
frwAck & erw & & L—— Process collikion
Qeccra<=7) mm:_ll deta =0
suutus = o data = orDuta. T 1S & v < il
default status -+ (xAD dat = tpktfic]
crw =PALSB - Tncrement ©
S *hataCTS e 16 =1
\ = status = DXAD data = tpkafic
Increment 1c
—if A in && ipr && fc <l &k
REATY 6—| resetCodnt > Limi
mblag | cums=0xAl due=tpkix]
Tnit CRC & fx Byte counter Increment 1o, neserComar
xptis =0 deta=0 Hand reser XCVR
frwAck 8& srr &8 0 & & ipr && «c <d &&
B<=sra<= 7) — reseiCoum < Limit
sanus = O00G]sm dam =0 watus = OxAG dam = tpktfic]
|] Tnorement te, resetCount
rwAck
wDam = data | defauls
s = PALSE reset all counters
watus - O dare = 0 tpr = FALSE
status = 0o = 0
defauls
status - 0 data = ¢ i - B
== o
[DONE_TX
{ DEBYG f/J se1Collder o
Tefaal Process ion
status -+ 0 datm = 0 stus =0 data = 0
1o & reseiCoant > Limit
_ | wams=D dats =0
Hart reset XCVR
K Smde
¥ T 2o & reseiCount < Limlt
A = e
. ke
wa:i? _—d‘ﬁ:nmuu dam=0
3 Process ead of TX packet
N ————
Figure 3.4 Special Parpose Mode 68360 to Transceiver Frame Transfer Handshake State Machine

~ 30~

Section 3.2

This pin would be set up to generate an interrupt. The interrupt service routine would manually
terminate packet reception..

TABLE 3.2 PIN MAFPING

68360 Neuron Equivalent
RXD2 CPO (Data Input)
TXD2 CP1 (Data Output)
RTS2 CP?2 (Transmit Enable Qutput)
CTS2 CP3 (Sleep Ouiput)
cD2 CP4 (Collision Detect Tnput)

Due to hardware bugs in the current revision of the 68360 processor several of the required fea-
tures of transparent mode do not work as documented. Consequently there is no way to implement
a reasonable level of performance of direct mode without external hardware,

-3]-

Section 4

4 APPLICATION PROGRAMMER’S INTERFACE (API) DESCRIPTION

4.1 Overview

The reference implementation supports most of the important features of a Neuron C program
such as explicit messages, implicit addressing, network variables, and alias variables, Every effort
has been made to make the porting of Neuron C programs 10 run under reference implementation
easier. The reference implementation uses modemn naming conventions and has hooks for support-
ing multiple stacks running on a single processot. Thus, there are differences in the naming of
structures and fields. For compatibility, structures similar to those in Neuron C are also defined
and functions to copy data between the Neuron C format and Reference Implementation format
are provided. Thus an application program can use Neuron C like structures or Reference Imple-
mentation defined structures, but not both at the same time. This section describes all the details
needed to understand how to write application programs for the reference implementation.

4.2 Compilation

The reference implementation uses several .c and .h files. The application programmer normally
needs to change only custom.h custom.c and apppgm.c files. The reference implementation
includes a make facility to re-compile everything to create the loadable image. See readme file for
details regarding compilation, loading, and execution of application program.

4.3 Pragmas

There are no Neuron C equivalent pragma declarations for the reference implementation program.

All pragma related initialization can be done using the files custom.h and custom.c. Edit these

files and change appropriate values before compiling the code. This section describes each of

these constants and their proper use. Most of the constants defined are either related to some
pragma or related to fields in readOnlyDataStruct. See Technical Device Data book for more
details.

@) MODEL_NUM - Every node has a model number and reference implementation has been
assigned 128. Normally, there is no need to change this constant unless you need a different
model number.

b») MINOR_MODEL _NUM - This is the minor model number. Default is 0. Normally, there
should be no need to change this value.

¢) READ_WRITE_PROTECT - Used to protect areas of memory from read or write using net-
work management commands. See Data Book for more details.

d) RUN_WHEN_UNCONF - This is used to indicate whether the application program should
run even if the node is in un-configured state. The default is O (Do not run). Set it to 1torun
when un-configured.

¢) NUM_ADDR_TBL_ENTRIES - This specifies number of address table entries. The maxi-
mum value is bounded by OxFFFF. See Sec. 2.6.11 for more details.

f) RECEIVE_TRANS_COUNT - This specifies number of receive transaction records atlocated
for this node. For larger incoming traffic, increase the value. If this value is too small, incom-
ing packets could get discarded due to unavailable entry in the receive record pool. If it is too

large, then the search time for transport, session, and auth layers will increase every time
TPReceive or SNReceive or AuthReceive are called and then the performance degrades.

.32

g)

h)

i)

7
k)

D)

o)
p)

q)

s)
1)

w)

Section 4.3

NV_TABLE_SIZE - This specifies the number of network variable table entries. Set this
based expected number of network variables used in the application program. For arrays,
each entry will consume one network variabie table entry. Reference implementation is like
host based node and hence you have up to 4096 entries.

NV_ALIAS_TABLE SIZE - This specifies the nwmber of alias table entries used by the
node. Alias table entries are used for creating alias entries for primary network variables.
These alias entries can have their own selector numbers and helps to resolve some binding
problems that are not allowed otherwise. Unless the binding tool can make use of alias tables,
there is no use for these entries unless the binding is done manually.

SNVT_SIZE - This specifies the number of bytes allocated for snvt structures. If the node has
lot of network variables, you need to increase this space to allow information about these
variables to be recorded in these structures. See section A.5 of Data Book for more details.
APP_OUT_BUF_SIZE - This specifies the number of bytes allocated for application output
buffers. This field is encoded using the table on page 9-9 of Data Book Rev. 4.
APP_IN_BUF_SIZE - This specifies the number of bytes allocated for application input buff-
ers.

NW_OUT _BUF _SIZE - This specifies the number of bytes allocated for network output
buffers.

NW_IN_BUEF_SIZE - This specifies the number of bytes allocated for network input buffers.

APP_OUT_Q _CNT - This specifies the number of entries allocated for application output
buffers. This field is encoded using table on page 9-10 of Data Book Rev. 4.

APP_OUT_PRI_Q_CNT - This specifies the number of entries allocated for application pri-
ority output buffers.

APP_IN_Q_CNT - This specifies the number of entries allocated for application input buff-
ers.

NW_OUT_Q_CNT - This specifies the namber of entries allocated for network output buff-
ers.

NW_OUT_PRI_Q CNT - This specifies the number of entries allocated for network priority
output buffers.

NW_IN_Q_CNT - This specifies the number of entries allocated for network input buffers.
NGTIMER_SPCL_VAL - This specifies the receive timer value in seconds used for messages
having unique id (i.e. Neuron Id) addressing.

NON_GROUP_TIMER - This specifies the receive timer value to be used for messages that
do not use group or unique id addressing. This value is encoded using the table on page 9-17
of Data Book Reyv. 4. This field is stored in config data structure and hence can be changed by
management tools.

NM_AUTH - indicates whether network management commands are to be authenticated or
not. 0 => no, 1 => yes.

NODE_DOC - This is used to store a nodes self documentation string. It should be a C string.
The maximum size is 1023 bytes,

33.

Section 4.3

x) GROUP_SIZE_COMPATIBILITY - This indicates whether the value of group size indicated
in destination address for explicit messages is (actual group size + 1) or actual group size,
when the node is not a member of the group. Since the firmware protocol in Neuron Chips
always reduce the value by 1 to determine the number of responses or acks expected, the
value should be set to {(actual group size + 1). In reference implementation, this can be set to
either (actual group size + 1) or actual group size depending on whether this constant is
defined or not.

y) MAX_NV_ARRAYS - This specifies the maximum number of array network variables that
will be used in this node. This is needed to help the protocot allocate some space for storing a
table for its internal use.

z) MAX_NV_OUT - This specifies the maximum number of outstanding network output vari-
ables that are scheduled due to Propagate function calls at any point of time. A queue with
this size is used to schedule network variable updates. If this quene becomes full, further net-
work variable update messages (using Propagate) cannot be processed until space becomes
available in this queue.

aa) MAX_NV_LENGTH - This specifies the maximum number of bytes allocated to capture the
value of network value variables that are declared as synchronous, When sach a varjable is
updated and propagated, the current value of the variable is copied into the queue and hence
this value is useful to indicate maximum size. Note that reference implementation does not
use mailoc for dynamic allocation after node reset.

ab) MAX_NV_IN - This specifies the maximum number of network input variables that can be
scheduled for polling. Every time the application program wants to poll a network input vari-
able, it is placed in a queue whose size is determined by this constant.

ac) MAX_DATA_SIZE - This specifies the maximum size of data array in gp->msgOut or
msg_out structure which is used to from explicit messages. This size is independent of
APP_OUT_BUF_SIZE but does not make sense for this to be any larger.

ad) TS_RESET_DELAY_TIME - This specifies the timer value in milliseconds used in delaying
the transport and session layers for sending any new messages after a power-up or external
reset. This is done o avoid sending messages that could be considered as duplicates and
tossed by receiving nodes.

ae) MALLOC_SIZE - This specifies the size of array used for allocating storage for all the
queues, receive record pools etc. by the protocol. Clearly, the proper value depends on many
of the values defined in custom.h and hence only the application programmer can determine
this value. If this value is too small, some layer will be unable to do a proper Reset forcing the
node to return from main. One can set this to a large value, run the application, and then
check the value of gp->mallocUsedSize to compute a more accurate value. Alternatively,
once can go through Reset functions of all layers and compute the appropriate value manu-
ally. Trial and error approach is probably easier.

In addition to the constants defined in custom.h, the application programmer can also indicate
other information about a node in custom.c. This includes information such as the Neuron Id of
the node, the number of domains for the node, the subnet/node number, aunthentication key, etc.
These are self-explanatory and the details of the structure definition can be found in custom.h.

_34-

Section 4.4

44 Initialization

Every application program should provide a function called Applnit that will be called once by the
main.

void 2ppInit (void):

The purpose of this function is to initialize variables, register network variables, tags etc. once
during power-up. These initialization are such that they are not performed after every reset.

4.5 Reset

Every application program should provide a function called AppReset that will be called every
time the node is reset.

void AppReset (void);
The purpose of this function is to initialize variables after every reset or do any other work the
application program finds appropriate.
4.6 Application Program
Every application program should include <node.h> header file and provide a function called
DoApp.

void Dolpp{void);

This function is the entry point for the acmal application program. The scheduler calls Doapp ()
once per pass through the round robin schedule loop. The Dozpp () function has four responsibili-
ties:

a) Process incoming messages, if any. Upon completion of processing a message, call

msgFree() .

b) Process incoming responses, if any. Upon completion of processing a response, call

respFree() .

¢) Perform application specific processing. (¢.g sending messages, responses, updating network
variables etc.)

d) Return to the round robin scheduler quickly. This is necessary to allow the protocol stack to
process new messages. If the application needs to perform a large amount of processing, it
must break the processing up into small pieces, and process one piece per call.

Messages and responses must be processed in a timely function, preferably on each pass through
DoApp. If the application messages are not processed quickly enough, messages may be lost
because all application input buffers are full.

The user application must not define the entry point "main()". The reference implementation
scheduler defines the entry point.

Tn addition to the above two functions, the application program must define the following func-

tions:

void MsgCompletes (Status stat, MsgTag tag):
This function is called whenever a transaction initiated by the application
is completed. stat will be either SUCCESS or FAILURE. This function has the
same role as the msg _completes event of the Neuron C program.

void NVUpdateCompletes(Status stat, intlé nviIndex, intlé nvArrayIndex);
This function is called whenever a network variable update or pell either
succeeds or fails. stat will be either SUCCESS or FATLURE. nvIndex is the
index of the network wvariable. nvaArrayIndex is the array index if nvIndex

35—

Section 4.7

corresponds to a network array variable.
void NvtpdateOccurs (intlb nvindex, intl6é nvArrayIndex);
This function is called whenever a network variable has been updated. The
nvIndex is the index of the variable that was updated. nvArrayIndex is array
index if nvIndex corresponds to an array network variable.
void Wink(void);:
This function is called when the node receives the wink network management
message. The application can do whatever it wants.
vaid OfflineEvent{void);
This function is called just before the application is placed offline.
void OnlineEvent{void):
This function is called just before the application is placed online.

4,7 Explicit Messages and Responses

Since the reference implementation has hooks for supporting multiple stacks, a global structure is
used for each stack. Before calling any function, the scheduler sets pointers gp, eep, and nmp to
point to the global stack data, EEPROM data, and neuron memory mapped data. Within the global
stack data, the reference implementation has variables msgln, msgOut, respln, respOut, msgRe-
ceive, and respReceive. These are similar to the ones defined in Neuron C. msgReceive is a bool-
ean variable that is set to true whenever there is a message available in msgin. Similarly,
respReceive is true if there is a response 0 be received in respln.

To make porting of existing Neuron C programs easier, the reference implementation can create
variables such as msg_in, msg_out etc if the constant NEURON_STRUCTURES_NEEDED is
defined in lontalk.h. If this constant is defined then the application program should only use vari-
ables similar to the ones defined for Nearon C. Otherwise, the application programs should vari-
ables defined in reference implementation (gp->msgin, gp->msgOut etc). Some of these
structures have additionat fields in reference implementation that should be filled by the applica-
tion program (for example, len field is required for msg_out). See api.h for details of these struc-
tures. The following descriptions use Neuron € variables but the same holds for variables such as
gp->msgOut that are unique to reference implementation.

extern msg_in type msg_in; // For incoming message
extern msg_out _type msg_out; // For outgoing explicit message
extern resp_in_type resp in; // For incoming response

extern resp_out_type resp_out; // For ocutgoing response
extern nv_in_addr_type nv_in_addr; // The source address of incoming message
extern intl16 nv_array_index; // array index for nv array var update

Boolean MsgAllec(veid); // Returns TRUE if explicit message can be formed.
Boolean msg_alloc(void); // For Neuron ¢ compatibility. Same as MsghAlloc.
Boolean MsgAllocPriority(void}; // Similar to MsgAlloc for priority messages.
Boolean msg_alloc_priority(wvoid); / / For Neuron C Compatibility.

void MsgSend (void) ; // To send an explicit message.

void msg_send (void) ; // For Neuron C Compatibility.

void MsgCancel (void) ; // Does nothing. For backward compatibility.
void msg_cancel (void) ; // For Neurcn C Compatibility.

void MsgFree{void}; // Releases data in msgln to receive new one.
void msg_free({veid): // For Neuron C Compatibility.

Boolean msgReceive(void); // TRUE if there is msg in msgln.

Boolean msg_receive(void): // For Neuron C Compatibility.

36 -

Section 4.7

Boolean Respalloc (void); // Returns TRUE if response can be formed.
Boolean resp alloc(void); // For Neurcn C Compatibility.

void RegpSend (void) ; // Send the response in resp_out.

wvoild resp_send (void) ; // For Neuron C Compatibility.

void RespCancel (void) ; // Does mothing. For backward compatibility.
void resp_cancel (void) ; // For Neuron C Compatibility.

void RespFree (void): // Releases data in respIn to receive new one.
void resp_free (void}; // For Neuron C Compatibility.

Boolean RespReceive(void); // Check if there is any response to receive.
Boolean resp receive(void): // For Neuron C Compatibility.

4.7.1 Receiving Messages—

extern msg_in_type msg_in; // For incoming message
Boolean msg receive(void): // For Neuron C Compatibility.
vold msg_free({void) ; // For Neuron C Compatibility.

When the protocol receives a message addressed to this node, the data from the message is written
to the msg_in stracture, and the next call to function msg_receive() will return TRUE. The appli-
cation uses the data in msg_in, and then calls msg_free (). The msg_£ree function enables a new
message to be placed in msg_in. When another message is received, or if a message is already
buffered, it is placed in msg_in, and the next call to the funciton msg_receive () will return TRUE.
Thus the application can get at most one message per cycle. If the application calls msg_receive()
but does not call msg_free(), the reference implementation will automatically call msg_free().

4.7.2 Receiving Responses—

extern resp_in type resp_in; // For incoming response
Boolean resp_recelve(void}; // For Neuron C Compatibility.
void resp_ free({void); // For Neuron C Compatibility.

When the protocol receives a response to a request made by this node, the data from the response
is written to the resp_in structure, and the next call to function resp_receive(} will return
TrRUE. The application uses the data in resp_in, and then calls resp_free(). The resp_free
function enables a new response to be placed in resp_in. When another response is recetved, or if
a response is already buffered, it is placed in resp_in, and the next call to the function
resp_receive () will return TRUE. Thus the application can get at most one response per cycle. If
the application calls resp_receive() but does not call resp _free(), the reference implementation
will antomatically call resp_free().

4.7.3 Sending Messages—

extern msg_out_type msg_out;// For outgoing explicit message

Boolean msg_alloc({void}; // For Neuron C compatibility. Same as MsgaAlloc.
Boolean meg alloc priority{void); // For Neuron C Compatibility.

void msg_send(veoid); // For Neuron ¢ Compatibility.

Before sending a message, the application calls msg_alloc() of msg alloc priority() for a
priority message. If the allocation function returns FALSE, then an application output buffer is not
available, and application must try again later. These functions simply check if the corresponding
application output buffer has space for storing a message or not.

When the allocation function returns TRUE, an application message out buffer is allocated for the
current message. The application sets various fields in msg_out to construct the message. The

37

Section 4.8

field len is new and is required. The value of len is the number of bytes stored in data array. The
remaining fields are as done in Neuron C. When the message in msg_out is ready to be sent, the
application calls msg_send(), and the message is sent. There is no need to call the function
msg_cancel() as it does nothing. The structure msg_out is re-initialized by the reference imple-
mentation after each msg_send().
Tn order for the application program to receive message completion, the application program
should define the function:

void MsgCompletes (Status stat, MsgTag taqg) ;
When a message completes, the API calls the user defined function MsgCompletes () to return the
completion status of the message. The tag parameter is the value from the tag field of the msg_out
structure.

4.7.4 Sending Responses—

extern resp out_ type resp out; // For ocutgoing response
Boolean resp_alloc({void)}: // For Neuron C Compatibility.
void resp_send (void} ; // For Neuron C Compatibility.

When the application receives a message containing a request, the application returns a response.
Before sending a tesponse, the application calls resp_alloc(). If resp_alloc{) returns
FALSE, then an application response buffer is not available, and application must try again later.
The function simply checks if there is space for a new response in the response queue for session
layer.

When resp_alloc () returns TRUE, the application can send a response. The application sets vari-
ous fields in resp_out to construct the response. The field len is required and represents the num-
ber of bytes in data array of the response. The fiekd req_id is used to indicate the request id of the
corresponding request. This is used for retrieving the matching request from the receive record
pool. The value of 0 is an invalid request id and is used by the reference implementation to detect
the fact that the application program did not initialize this field and hence it automatically sets it to
the request id of the request last received in msg_in. The field null_response can be set to true to
indicate that it is a null response (one which is not sent out). This field is used by the session layer
to mark the request as done. A well behaved application program is expected to respond to every
request. A null response is provided for this purpose. The reference implemeniation will continue
to work without any problem even if a response is not sent by the application program.When the
response in resp_out is ready fo be sent, the application calls resp_send(), and the response is
sent. There is no need to call the function resp_cancel() as it does nothing. The structure resp_out
is re-initialized by the reference implementation after each resp_send().

4.8 Network Variables

Network variables are declared in the application program in a different way than done in the
Neuron C program. The API defines the following structure {0 help the declaration of network
variables.

typedef struct
{

Bits priority : 1; /* TRUE or FALSE */
Bits direction . 1; /* NV_INPUT or NV_OUTPUT */
Bits selectorHl . 6; /* Present only for non-bindable */

_38-

Section 4.8

Bits selectorlLo s+ 8; /* Present only for non-bindable */
Bits bind - 1; /* 1 => bindable 0 ==> nobindable */
Bits turnaround : 1; /* TRUE or FALSE */

Bits service + 2; /* ACKD, UNACKD_RPT, UNACKD */

Bits auth : 1; /* TRUE or FALSE */

Bits 3; /* Unused */

Bits explodeaArray 1; /* Explode arrays in SNVT structure */

T
~J
-

Bits nvLength /* Length of network variable in bytes.

For arrays, give the size of each item. */
uint8 snvtDesc; /* snvtDesc_struct in byte form. Big Endian */
uint8 snvtExt; /* Extension record. Big_Endian. */
uint8 snvtType; /* 0 => non-SNVT variable. */
uint8 rateEst;
uint8 maxrEst;
uintlé arrayCnt; /* 0 for simple variables. dim for arrays. */
char *nvName; /* Name of the network variable */
char *nvSdoc; /* Sel-doc string for the variable */
void *varaddr; /* Address of the variable. */

} NvDefinition;

For each network variable, the application must define a structure and initialize it with appropriate
values. This structure is similar to the network variable declarations with bind information. There
are no defaults and hence you should provide all the values. For each network variable, the appli-
cation should also declare storage for that variable and an index to communicate with API. For
example,
nint intIn; /* Polled network input variable. */
NvDefinition intInDef =
{

FALSE, NV_INPUT, 0, 0, 1, FALSE, ACKD, FALSE,

0, sizecf(nint), 0xA0, 0x30, 0, 0, O,

0, ®"intIn", "intInSD", &intIn
};
intilé intInIndex;
Note that the type zint is used. In place of nint, one can use almost any type. The following pre-
defined types are convenient to use to declare neuron equivalent types.

typedef char int8;
typedef short int intl6;
typedef long int int32;
typedef unsigned char uint8;

typedef unsigned short int uintlé;
typedef unsigned long int uint32;
/* Neuron C Definitions for int long etc. */

typedef int8 nshort;
typedef int8 nint;
typedef uint8 nuint;
typedef uint8 nushort;
typedef intlé nlong;

39

Section 4.9

typedef uintlé nulong:

The network variable must be registered explicitly using the function AddNV in Applnit function.
Even though you can initialize the storage for the variable in the declaration statement, yon should
also do it in AppReset fanction to ensure that the variable has those values after every node reset
(unless the logic calls for otherwise). The following code illustrates this procedure.

Status AppInit{void)

{
/* Register Network variables */
intOutIndex = AJANV(&intOutDef) ;
longQutIndex = AJANV{&longQutDef} ;
intArrayOutindex = AddNV (&intArrayOutDef) ;
intInIndex = AAANV (&intInDef) ;
longInIndex = AAdNV (&longInDef) ;

AJANV (&intArrayInDef) ;

intArrayInindex

/* Make sure we were successful in registering all variables */

if (intOutIndex == -1 ||
longOutIndex = -1 ||
intArrayOutIndex == -1 ||
intTnIndex == -1 ||
longInIndex == -1 ||
intArrayInTndex == -1)

{
return (FAILURE) ;

}

tag0 = NewMsgTag (BINDABLE) ;

tagl = NewMsgTag (BINDABLE) ;

/* Make sure we got the tags successfully */
if (tagl == -1 |} tagl == -1}
{

return (FATLURE) ;

}

return{SUCCESS) ;
}
AddNV returns -1 if it fails to register. It is a good idea to test for this and return FAILURE for
Applnit to indicate to the scheduler that there was a problem.

4.9 Network Variable Related Functions

There are several functions in the API to support registering, updating, polling, propagating of
network variables. They are defined below:

/**'k********
Adds a new network variable. This involves adding an entry into nvConfig-
Table, nvFixedTable, SNVT information, if present etc. The return value is
the index assigned to the variable. For arrays, each element is like a sep-
arate network variable. So, multiple entries are added to the

40—

Section 4.9

tables. However, only the base index is returned.
1\‘***/

int16 AJANV(NMVDefinition *dp}):

/* NVUpdateCcmpletes is called when an nv update or nv pell completes. The 2nd
parameter iz the array index for array variables, 0 for simple variables. */

void NVUpdateCompletes{Status stat, inti6 nvIndex, intlé nvArrayIndex) ;

/* NVUpdateOQccurs is called when an input nv has been changed. The 2nd
parameter is the array index for array variables, 0 for simple variables. */
void NVUpdateOccurs(intlé nvIndex, intl6 nvArraylIndex):

/* To send all network output variables in the node.
Polled or not, Use Propagate function. */
void Propagate(void):

/* To send one simple network variable or a whole array */
void PropagateNV(intlé nvIndex);

/* To send an array element or any other simple variable.*/
vold PropagatebrrayNv{intlé arrayNvVIndex, intlé index);

/* To poll all imput network variables */
void Poll{wvoid};

/* To poll a specific simple input network variable or an array */
void PollNvV({intlé nvIndex);

/* Poll a specific array element or any other simple variable. */
void PollarrayNv{intil6 arrayNvIndex, intlé index):

The reference implementation supports implicit messages only through the use of explicit calls to
one of the three Propagate functions. Since there is no Neuron C like compiler, there is no way to
modify the code based on the fact that a variable got updated and hence the need for these explicit
calls. The Poll functions are as used in Neuron C.

A network variable update may involve one primary and 0 or more alias entries. For each, the
address table entry can have difference address formats. Thus, it is possible that several nv update
messages are sent for one network variable update. A network variable update is said to succeed if
every transaction scheduled for that variable succeeds. The value of the parameter stat in NVUp-
dateCompletes indicates whether the network variable update succeeded or failed. Note that it is
not a boolean variable but rather of type Status. So, you should compare against SUCCESS or
FAILURE.

A network variable poll may involve one primary and 0 or more alias entries. For each, the
address table entry can have different address formats. Thus, it is possible that several nv poll
messages are sent for one network variable poll. A network variable poll is said to succeed if it is
turnaround only or every transaction (not including turnaround) succeeds and at least one
response contains valid data. Thus, a turnaround only poll will always succeed. As another exam-
ple, if a network variable poli is both turnaround and connected to a network output variable in
another node and that node returns nutl data, then the poll will fail. The value of the parameter stat
in NVUpdateCompletes indicates whether the network variable poll succeeded or failed. Note that

41

Section 4.10

it is not a boolean variable but rather of type Status. So, you should compare against SUCCESS or
FAILURE.

4,10 Network Variables and Address Table Entries

Due to limitation of 4 bits for address table index in network variable config structure and the fact
that network management tools may not support more than 15 address table entries, the reference
implementation does not support implicit addressing for network variables using address table
entries beyond the 15th entry. It is conceivable for someone to modify the code so that this is pos-
sible and at the same time the code is backward compatible. One easy way this can possibly be
done is to use an additional table for the network variables and store only the index of the address
table entry that should be used for each network variable. This entry can be used only if the origi-
nal network variable table indicates that the network variable is not bound to any address table
entry. If both indices are unbound, then the network variable is not bound to an address table
entry. The functions that handle nv npdate and poll should be modified to take care of this change
by setting a local variable representing the address table index appropriately. Note that the address
table entries should be initialized by the application program somehow (either using custom.c or
some other way). This is just a suggestion and there is no guarantee that this technique work well
as it has not been tried. Even if it works, care should be taken to make the code inter-operable with
existing tools and neuron nodes. It is best to use this for internal use when the situation demands
the use of network variables with lots of address table entries.

4.11 Message Tags

The application program can define either bindable tags or non-bindable tags in the application
program. The following function is used to declare new tags.

/* To get a new message tag. NewMsgTag (BIND) or NewMsgTag(NOBIND) */

MsgTag NewMsgTag (BindNoBind bindStatusIn);

The number of bindable tags is usually bounded by 15 but can be up to 0xFF. The number of bind-
able tags declared in a node is stored in a field in SNVT structures and is accessible to manage-
ment tools. Thus, one should limit the number of bindable tags to no more than 15 for the purpose
of interoperability. Each bindable tag consumes an address table entry and hence it is wise not to
use up all these entries if you also want to bind network variables. Bindable tags are used for
implicit addressing. An application program can use large number of non-bindable tags. The limit
on number of non-bindable tags is 0xFFFF - NUM_ADDR_TBL_ENTRIES.

The reference implementation will use implicit addressing if the tag value supplied in msg_out
structure is less than NUM_ADDR_TBL_ENTRIES and the destination address i msg_out is
unbound or turnaround. Since tag is just a number, an application can use tag valses > 15 but less
than NUM_ADDR_TBL_ENTRIES to use implicit addressing. Such tags should be declared
explicitly. However, these address table entries should be explicitly initialized by the application
program either using custom.c or some other way. Non-bindable tags are primarily used for corre-
lation with message completion.

4,12 Miscellaneous Functions

The following are some miscellaneous functions that an application program can call.
/* Application can call this £n to put itself offline */

void GoOffline (void);

/* Appplication can call this fn to put itgelf unconfigqured */

void GolUnconfigured{void);

—42

Section 4.13

/* To send a service pin message */
Boolean ServicePinMessage (void);

4.13 Alias Tables

The reference implementation does support the concept of alias tables that are used to perform
more complex binding of network variables. Some older tools may not support the use of alias
tables. However, an application can initialize the alias tables based on known indices (Network
variables are registered in the order in which they are given starting with an index value of 0)
using custom.c file. Alternatively, a modern management tool that supports alias tables can be
used. In either case, the application program should define the number of alias table entries avail-
able in customn.h. This information is stored in SNVT structures and is available to network man-
agement tools.

4.14 Software Timers

The reference implementation allows the application program to use any number of software tim-
ers. All software timers are maintained using a single hardware timer. The software timers are not
automatically updated. The application needs to call either UpdateMsTimer or MsTimerExpired.
Only millisecond timers are supported. The following is the definition for the software timer

structure.

/* Software Timer definition. */
typedef struct

{

uint32 curTimervalue; /* Number of clock ticks left in timer. */
uint32 lastUpdatedTime; /* The time when the timer was last updated. */
Boolean expired; /* TRUE => it has already expired. */

} MsTimer;

The functions that are related to the use of software timers are:

void SetMsTimer (MsTimer *timerOut, uintlé initvaluelIn);
void UpdateMsTimer (MsTimer *timerInCut):

Boolean MsTimerExpired (MsTimer *timerInOut);

SetMsTimer is used to initialize the timer to given number of milliseconds. UpdateMsTimer is
used to update the timer. There is no harm to update a timer that has already expired. The field
curTimerValue indicates the number of milliseconds left before expiry. Instead of using Update M-
sTimer, an application program can use MsTimerExpired (similar to timer expiration event in Neu-
ron C) to check if a timer has expired. MsTimerExpired will return true only during the first time
the timer expired. If the timer has already expired, the function MsTimerExpired will return false.
MsTimerExpired calls UpdateMsTimer and checks the curTimerValue to determine whether the
timer expired or not. The reference implementation does not support repeating timers. The appli-
cation program should re-initialize the timer upon expiry.

Example:
MsTimer myTimer;

SetMsTimer (&myTimer, 1000); /* For 1 second */
/* Do some processing */

if (MsTimerExpired (&myTimer))

43

/* Do whatever you want */

SetMsTimer (&myTimer, 1000); /* Reset if needed */

Section 4.14

Section 5

5 REFERENCES

Amewsh 95
Echelon 95
Echelon 96
Echelon 91

Echelon 94

Harbison 95

Motorola 97
Motorola 95

Motorola 90

SDS 96a
SDS 96b

SBC36(U/EC User's Manual Revision 1, Arnewsh Inc.1995

Lontalk Protocol Specification Version 3.0 078-0i25-01A Echelon Corporation1995

LonWorks Protocol Layer 1 Timing, Preliminary, Echelon Corporation 1996

Neuron Chip Special-Purpose Mode Transceiver Interface Specification, LonWorks Engincering
Bultetin, Echelon Corporation 1991

NV Connectivity Extensions: The Aliasing Alternative, Revision 2.2 April 1994, Echelon Corpora-
tion

Harbison S. P and Steele G. L. Jr., C A Reference Manual, Prentice Hall 1997 ISBN 0-13-110933-
2

LonWorks Technology Device Data DL15%/D> Rev4, Motorola 1997,

MC68360 Quad Integrated Communications Controller User’s Manual MC68360UM/ADREY 1,
Motorola 1995

M68300 Family CPU32 Central Processor Unit Reference Manual CPU32RM/AS REV1, Motor-
ola 1991

CrossCode User Guide Version 7, Software Development Systems 1996
SingleStep User Guide Version 7, Software Development Systems 1996

45

